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Logistics

Announcements

» Midterm Exam |l has been pushed back to Nov 2/th
Last Lecture

» GPT

» BERT
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» Vision Transformers(ViT)

» Audio Data
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p [ext-to-Image
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Multimodal Learning

Transformers make very few assumptions about 'Wput data, so they have
become state-of-the-art in many different modalities:

» lext, Image, Video, Audio...

The core architecture has remained relatively constant across aplications,
what has changed is the representation and encoding of inputs and
outputs
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Vision Transformers

Vision transformers typically use an transformer encoder for

Image classification tasks

The overall architeture remains the same:

2. How to encode positional information?

Main
problems:

1. How to transform an image into a sequence of tokens?

UF

Encoder
N X

Cat
T

‘ Softmax ‘
| e ]

T

—>‘ Add & Norm ‘

Feed Forward
Neural Network

i)

->| Add & Norm ‘

| Multihead(Q.K,V) |

ot «T v

_J/

Positional
Encoding




Images as Sequences (Classification): Naive
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est approach to represent images as sequences is to consider every pixel as

N1:

The problemisthat the memory required by
the transformer grows quadratically O(n?)
with the number of input tokens n = wh

X = {x<1>,x<2>, o ,x<n>}



Images as Sequences (Classification): Patches

The most common approach is to split the input image into a sequence of non-
overlapping patches of size P X P

Thisapproach reduces the size of the

hw
sequencetom = E

<l> ..<2> <m>
5 N }
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Images as Sequences (Classification): CNN

Another approach to transform imagens in sequences is to use a Convolutional Neural
Network (CNN)to extract a feature vector from the image:

ResNet18 would downsample an image by a
factor of 8, giving 64 times fewer tokens

X = {x<1>,x<2>’ o ’x<m>}
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Positional Information (Classification)

't Is possible to define explicit positional encodding to a sequence of patches, but the most
common approach is to learn these positional embeddings:

1. Create one hot encoding based on position indices: 2. Multiply as an embedding matrix:
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Generative Image Transformers

Vision transformers typically use an transformer
decoder for image generation tasks

he overall architeture remains the same:

- xplicit positional embedding (sinusoidal)

Represent image as a sequence of pixels or
patches

Main problem:
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Vector Quantization

Jne way to address the problem of the high color vocabulary dimensionality is to use a
technique called Vector Quantization, which can be viewed as a form of data compression.
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ImageGPT codebook token > 312
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ImageGPT was the first auregressive transformers to
generate images.
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Audio Classification

Audio signals are represented as wafeforms, Audio signals are represented as wafeforms,
which are measures of amplitude of the air which are measures of amplitude of the air
pressure at regular time intervals. pressure at regular time intervals.

Waveform Mel-spectrogram
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Multimodal Learning

Since transformers can process many different kinds of data, we can create multimodal models
relatively straightforward with a "machine translation” framework

Examples:

» Audio-to-Text (Speech Recognition)

» Text-to-Image
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Whisper: Audio-to-Text (Speech Recognition)

Whisper is a speech recognition model by OpenAl
that uses a traditional encoder-decoder transformer
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Parti (Pathways Autoregressive Text-to-Image)

Parti is a text-to-image model by Google that
uses a traditional encoder-decoder transformer T2 118 [ ... ] Im |EOS
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ViT-VOGAN
(Detokenizer)

Images are tokenized by

a model basedon ViT
called ViT-VOGAN

VIiT-VQGAN

(Detokenizer)




CLIP (Contrastive Language-Image Pre-training)

CLIP is a model developed by OpenAl to learn embeddings for Image and text in the same vector
space and can be directly compared

(1) Contrastive pre-training
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CLIP (Contrastive Language-Image Pre-training)

CLIP is a model developed by OpenAl to learn embeddings for Image and text in the same vector
space and can be directly compared

(2) Create dataset classifier from label text

A photo of
a bject}.

(3) Use for zero-shot prediction
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1.

Can measure similarity between any image and text
embedding

Enables zero-shot classification by comparing image
embeddings to text embeddings of class names

Supports open-ended image-text matching tasks
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Next Lecture

L20: GANs

Generating images with Generative Adversarial Networks (GANs)
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