L16: Attention

Deep Learning

1

Logistics

Last Lecture

- ‣ Problems of one-hot encoding
- ‣ Word Embeddings
- ‣ Word2Vec
- ‣ GloVe

Lecture Outline

- ‣ Machine Translation
- ‣ Decoding
	- ‣ Greedy Search
	- ‣ Beam Search
- ‣ Attention in RNNs
- ‣ Visualizing Attention

Machine Translation

Portuguese English

Olá, como vai você? Hello, how are you?

O livro está em cima da mesa. The book is on the table.

 \cdots

Lucas irá viajar ao Rio em Dezembro. Lucas is travelling to Rio in December.

Em Dezembro, Lucas irá viajar ao Rio. Lucas is travelling to Rio in December.

Given a dataset of sentence pairs:

 $(x = \{x^{1>}, x^{1>}, x^{1>} \}, y = \{y^{1} \}, y^{1} \}, \dots, y^{1} \}$

we want to learn a model that maps x into y .

Seq2Seq Models

UFV

Encoder [E] Decoder [D]

We can approach this problem using a **Seq2Seq model**, where the **encoder** process the input sentence *x* and the **decoder** generates the translated sentence *y*

Decoding

 $\{y^{1,2}, \ldots, y^{1,2}\}$ that maximizes the conditional probability $P(y^{1,2}, \ldots, y^{1,2})$.

Decoding is the problem of finding the most likely translation. Formally, find the sequence

- \rightarrow $y =$ Lucas is traveling to Rio in December
- \rightarrow $y =$ Lucas is going to be traveling Rio in December
- \rightarrow $y =$ In December, Lucas will travel to Rio
- ‣ *Lucas is going to a conference in Rio y* =

x = *Lucas irá viajar ao Rio em Dezembro*

 $argmax P(y^{1}, ..., y^{1/2}, ..., y^{1/2})$ $\{y^{<1>}, \ldots, y^{}\}$ Objective function:

Decoding algorithms:

- **‣** *Greedy Search*
- **‣** *Beam Seach*

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of selecing the most likely word at each decoding step:

Lucas

11

-
-

Visualizing the Greedy Seach Problem

Visualizing the Greedy Seach Problem

Greedy Search

 $P(\text{Lucas}, \text{is}, \text{going}, \text{to} | x)$ $= 0.4 \cdot 0.5 \cdot 0.6 = 0.12$

Visualizing the Greedy Seach Problem

Greedy Search

 $P(\text{Lucas}, \text{is}, \text{going}, \text{to} | x)$ $= 0.4 \cdot 0.5 \cdot 0.6 = 0.12$

Beam Search Decoding

Beam search is a local search algorithm that improves upon Greedy Seach by simulating *b*solutions at each decoding step:

Beam Search Decoding

Beam search is a local search algorithm that improves upon Greedy Seach by simulating *b* solutions at each decoding step:

1. Get the **top** b most likely words to form a beam

solutions at each decoding step:

solutions at each decoding step:

3. Get the **top** *b* most likely sequences

solutions at each decoding step:

3. Get the **top** *b* most likely sequences

solutions at each decoding step:

3. Get the **top** *b* most likely sequences

solutions at each decoding step:

3. Get the **top** *b* most likely sequences Repeat steps 2. and 3.

Beam Search Decoding

Beam search is a local search algorithm that improves upon Greedy Seach by simulating *b* solutions at each decoding step:

> 3. Get the **top** *b* most likely sequences Repeat steps 2. and 3.

Decoding Long Sequences

 $x =$ "Lucas is traveling to Rio in December to attend a conference about music and artificial intelligence $\,$ that will be *hosted at the Federal University of Rio de Janeiro. He will go with one of his students."*

UFV

Regardeless of the decoding strategy, it is difficult for these seq2seq models to translate long sequence because they have to compress the entire input sequence in hidden state $h^{}$:

que será realizada na Universidade Federal do Rio de Janeiro. Ele irá com um de seus alunos." $y =$

 "Lucas irá viajar ao Rio em dezembro para participar de uma conferência sobre música e inteligência artificial

- **Encoder** has to carry the information about the subject (*Lucas*) from the beginning of the input.
- \blacktriangleright This is hard because the encoder updates h sequentially

Attention: Intuition

The idea behind **attention** is to allow the **decoder** to look at each input word at every decoding step *t*, instead of memorizing the whole input sequence into a single hidden state $h^{< T_x>}$

Without **attention** With **attention**

x = *"Lucas is traveling in December."*

 $\alpha^{< t, t'>}$ are weights representing how much "attention" the decoder should give to word $x^{\lt t'}$ when decoding the word $\hat{y}^{\lt t>}$ ̂

(Memorize the whole sequence before decoding)

(Look at each input word at every decoding step *t*)

Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate

The Context Vector

The weighted hidden states are summed to form a context vector $c^{< t>}$ for each decoding step $\,t.$ \blacktriangleright The context vector emphasizes the words that are more important for a particular decoding step

x = *"Lucas is traveling in December." α*<1,1>*h*<1> *Dezembro* $c^{}$ $\alpha^{<1,2>}h^{<1>}$ *y* <*Ty*> ̂ The key challenge of implementing attention is how to compute the weights $\alpha^{}$! *α*<1,3>*h*<3> α ^{<1,4>} h ^{<4>} = 0.05 ⋅ α ^{<1,5>} h ^{<5>} = 0.01 ⋅ $= 0.79 \cdot$ \mathbf{I} -0.5 0 $\begin{matrix} 0 \\ 1 \end{matrix}$ $= 0.10 \cdot$ 0.3 0.1 -0.5 $= 0.05 \cdot$ -0.3 0.4 0.9 \mathbf{I} 0.2 -0.1 $+$ ^{0.1}
+ 0.2 \mathbf{I} 0 -0.7 $\begin{bmatrix} 0.7 \\ 1 \end{bmatrix}$ α ^{<*t*,*t*′> some up to 1} = -0.37 0.018 0.805 + + + Note how $c^{<1>}$ is similar $h^{< 1>}$ since the model is giving more attention to *h*<1> $c^{<1>}$

Attention

Use states $s^{< t-1>}$ to produce $\alpha^{< t, t'>}$ so the model can have different context per decoding step.

Decoder [D]

 $|$ <SOS>

UFV

 $<$ SOS>

Use states $s^{< t-1>}$ to produce $\alpha^{< t, t'>}$ so the model can have different context per decoding step.

Attention

UFV

Use states $s^{< t-1>}$ to produce $\alpha^{< t, t'>}$ so the model can have different context per decoding step.

Attention

UFV

UFV

Use states $s^{< t-1>}$ to produce $\alpha^{< t, t'>}$ so the model can have different context per decoding step.

UFV

UFV

UFV

UFV

UFV

Visualizing Attention

as it decodes the translation.

UFV

Source (Portuguese)

Visualizing the attention weights $\alpha^{< t, t'>}$ helps analyzing how the model is attending to different words

Bahdanau Attention Weights Visualization

Implementing Attention in PyTorch

class BahdanauAttention(nn.Module): def __init__(self, hidden_dim): $super() . _ init$ () self.W1 = nn.Linear(hidden_dim, hidden_dim, bias=False) *# For encoder outputs (h_j)* self.W2 = nn.Linear(hidden_dim, hidden_dim, bias=False) *# For decoder state (s_i)* self.v = nn.Linear(hidden_dim, 1, bias=False) *# For scoring* nn.init.xavier_uniform_(self.W1.weight) nn.init.xavier_uniform_(self.W2.weight) nn.init.xavier_uniform_(self.v.weight) def forward(self, hidden, encoder_outputs, mask): *# hidden (s_i): [batch_size, hidden_dim] # encoder_outputs (h_j): [batch_size, src_len, hidden_dim] # Energy calculation: e_ij = v^T tanh(W₁h_j + W₂s_i)* e = self.v(torch.tanh(self.W1(encoder_outputs) + self.W2(hidden).unsqueeze(1))).squeeze(-1) *# Apply mask and get attention weights: a_ij = softmax(e_ij)* $a = F.s$ oftmax(e.masked_fill(mask == 0, -1e10), dim=1) return a

UFV

Next Lecture

L17: Transformers

Solving sequential problems using only attention (without recurrence).

