

Deep Learning

L16: Attention

1

Logistics

Last Lecture

- Problems of one-hot encoding
- Word Embeddings
- Word2Vec
- ► GloVe

Lecture Outline

- Machine Translation
- Decoding
 - Greedy Search
 - Beam Search
- Attention in RNNs
- Visualizing Attention

Machine Translation

Given a dataset of sentence pairs:

 $(x = \{x^{<1>}, x^{<2>}, ..., x^{<T_x>}\}, y = \{y^{<1>}, y^{<2>}, ..., y^{<T_y>}\}),$

we want to learn a model that maps x into y.

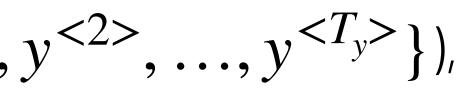
Portuguese

Olá, como vai você?

O livro está em cima da mesa.

Lucas irá viajar ao Rio em Dezembro.

Em Dezembro, Lucas irá viajar ao Rio.



English

Hello, how are you?

The book is on the table.

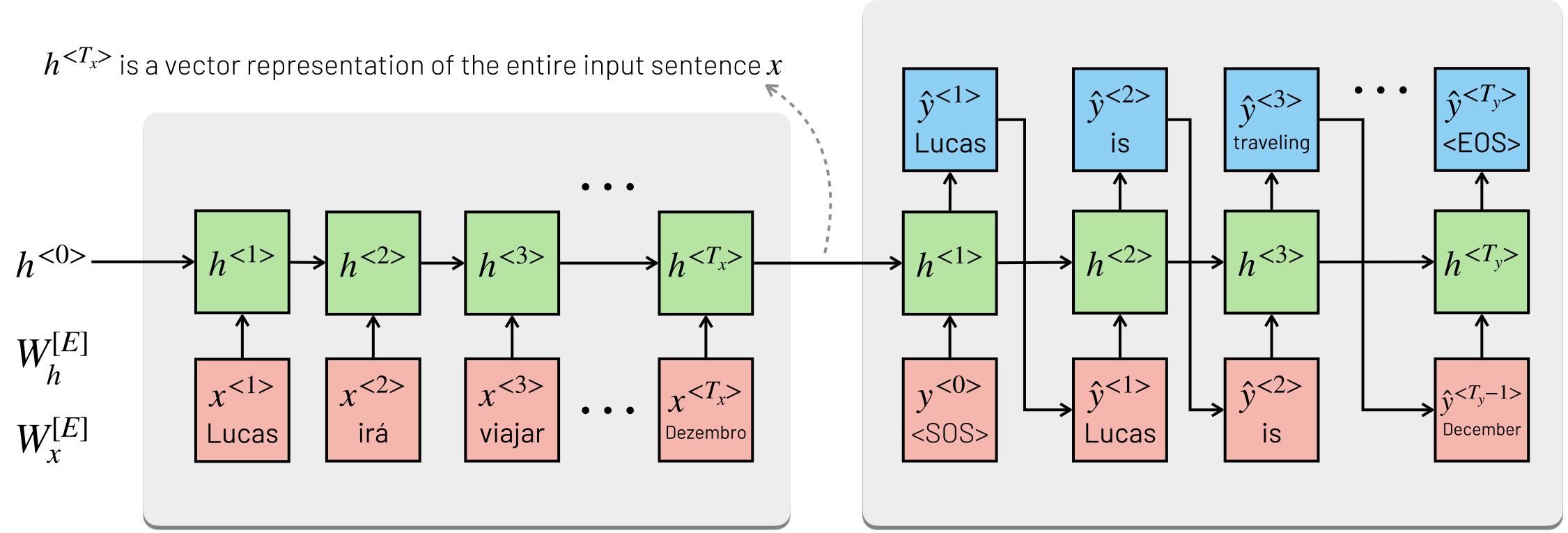
Lucas is travelling to Rio in December.

Lucas is travelling to Rio in December.

Seq2Seq Models

IJFV

We can approach this problem using a **Seq2Seq model**, where the **encoder** process the input sentence x and the **decoder** generates the translated sentence y



Encoder[E]

Decoding

 $\{y^{<1>}, \ldots, y^{<T_y>}\}$ that maximizes the conditional probability $P(y^{<1>}, \ldots, y^{<T_y>}|x)$.

x = Lucas irá viajar ao Rio em Dezembro

- y = Lucas is traveling to Rio in December
- y = Lucas is going to be traveling Rio in December
- y = In December, Lucas will travel to Rio
- y = Lucas is going to a conference in Rio

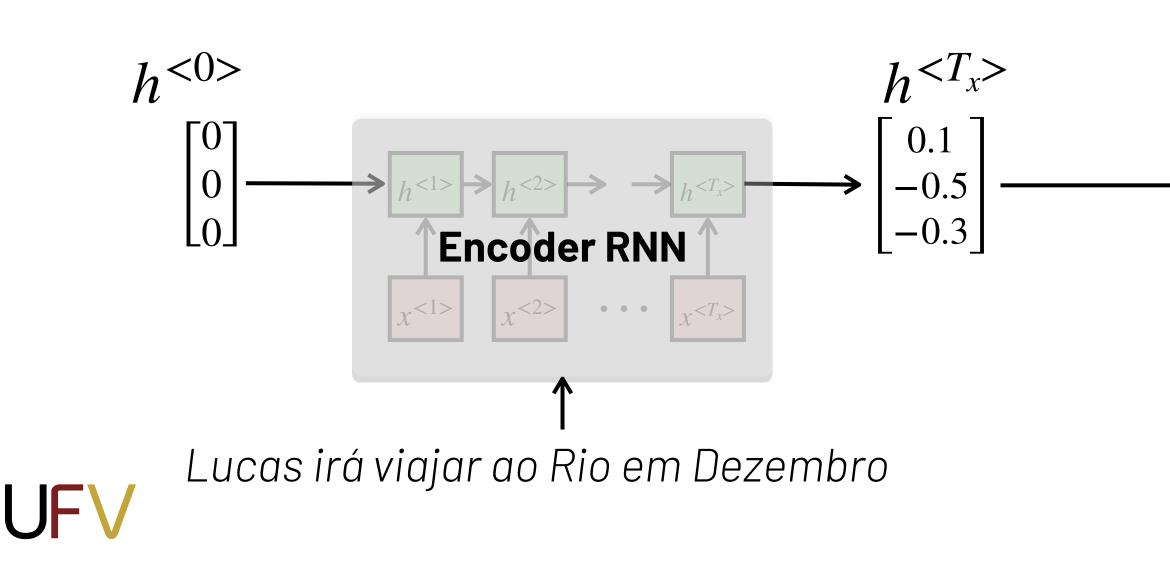
Decoding is the problem of finding the most likely translation. Formally, find the sequence

Objective function: $argmax P(y^{<1>}, ..., y^{<T_y>} | x)$ $\{y^{<1>}, \dots, y^{<T_y>}\}$

Decoding algorithms:

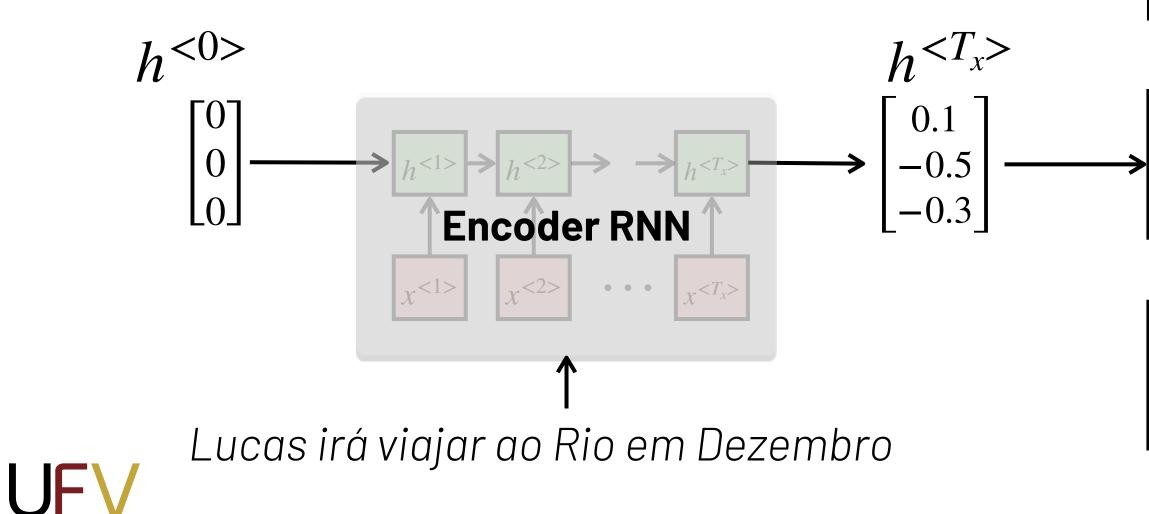
- Greedy Search
- Beam Seach

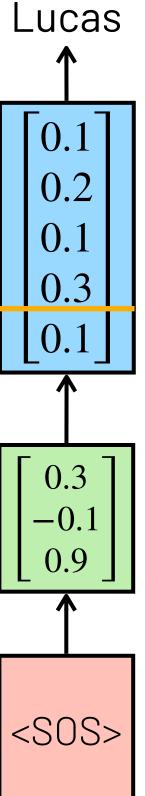
Greedy search is the simplest algorithm for decoding seq2seq models. It consists of selecing the most likely word at each decoding step:



Greedy search is the simplest algorithm for decoding seq2seq models. It consists of selecing the most likely word at each decoding step:

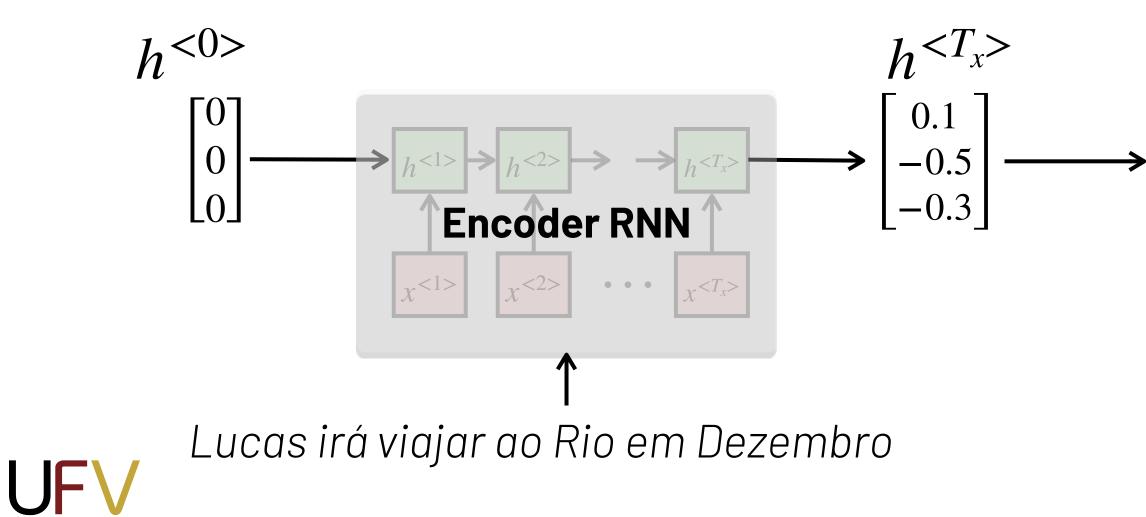
Lucas

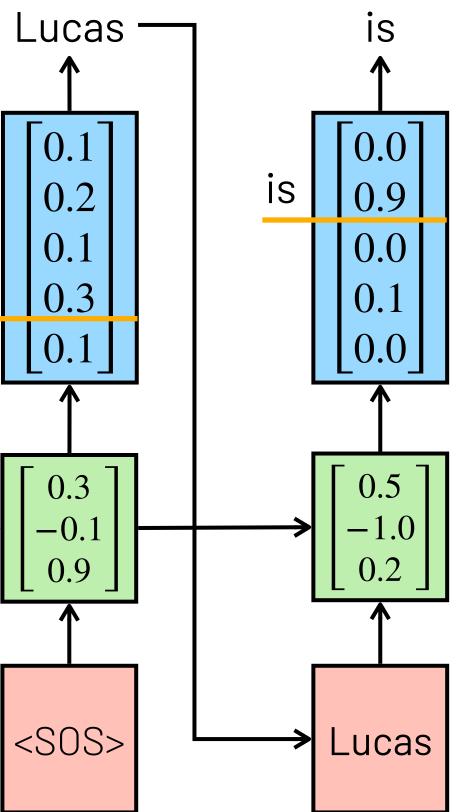




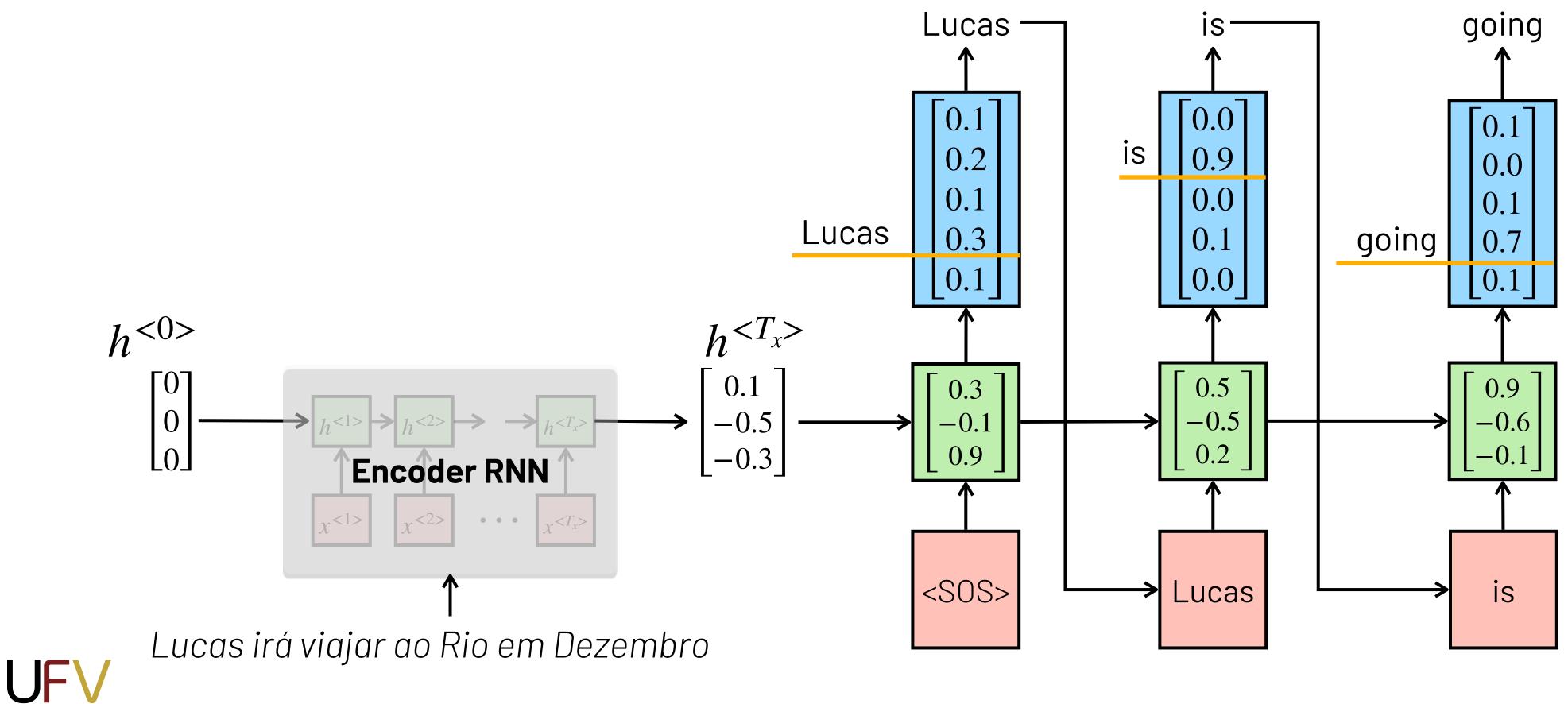
Greedy search is the simplest algorithm for decoding seq2seq models. It consists of selecing the most likely word at each decoding step:

Lucas

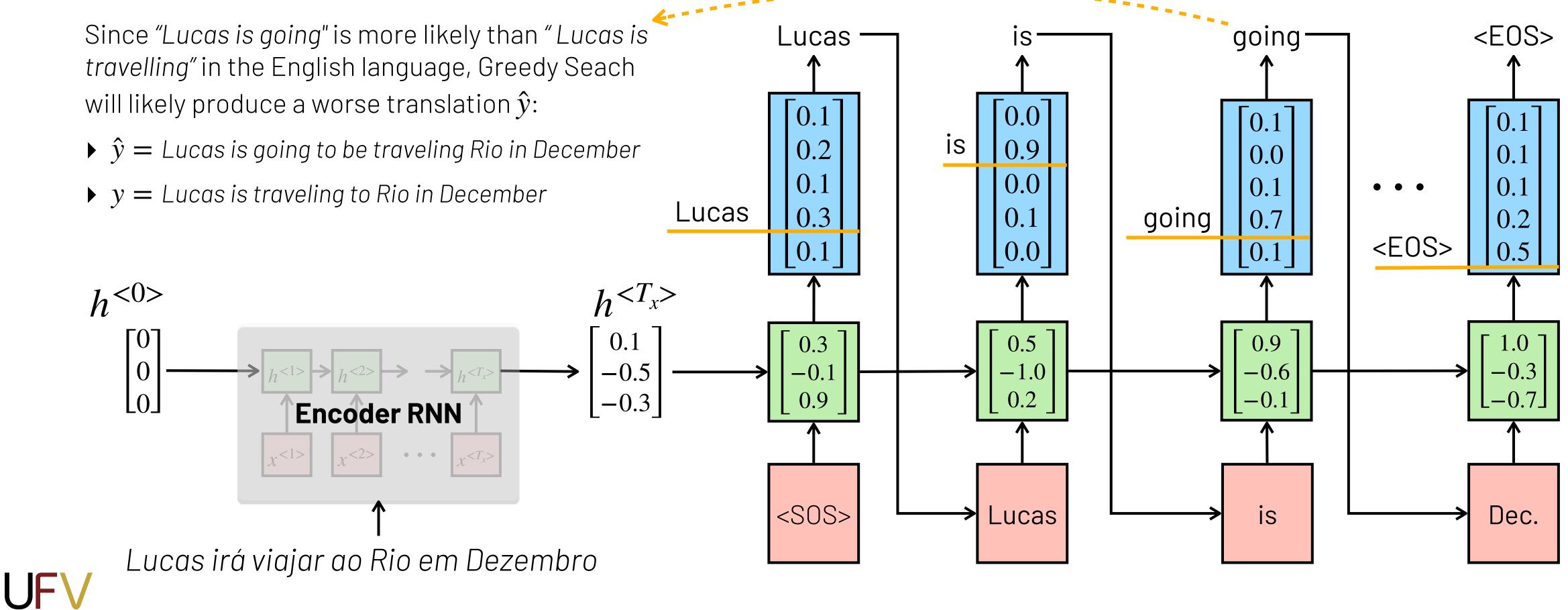




Greedy search is the simplest algorithm for decoding seq2seq models. It consists of selecing the most likely word at each decoding step:

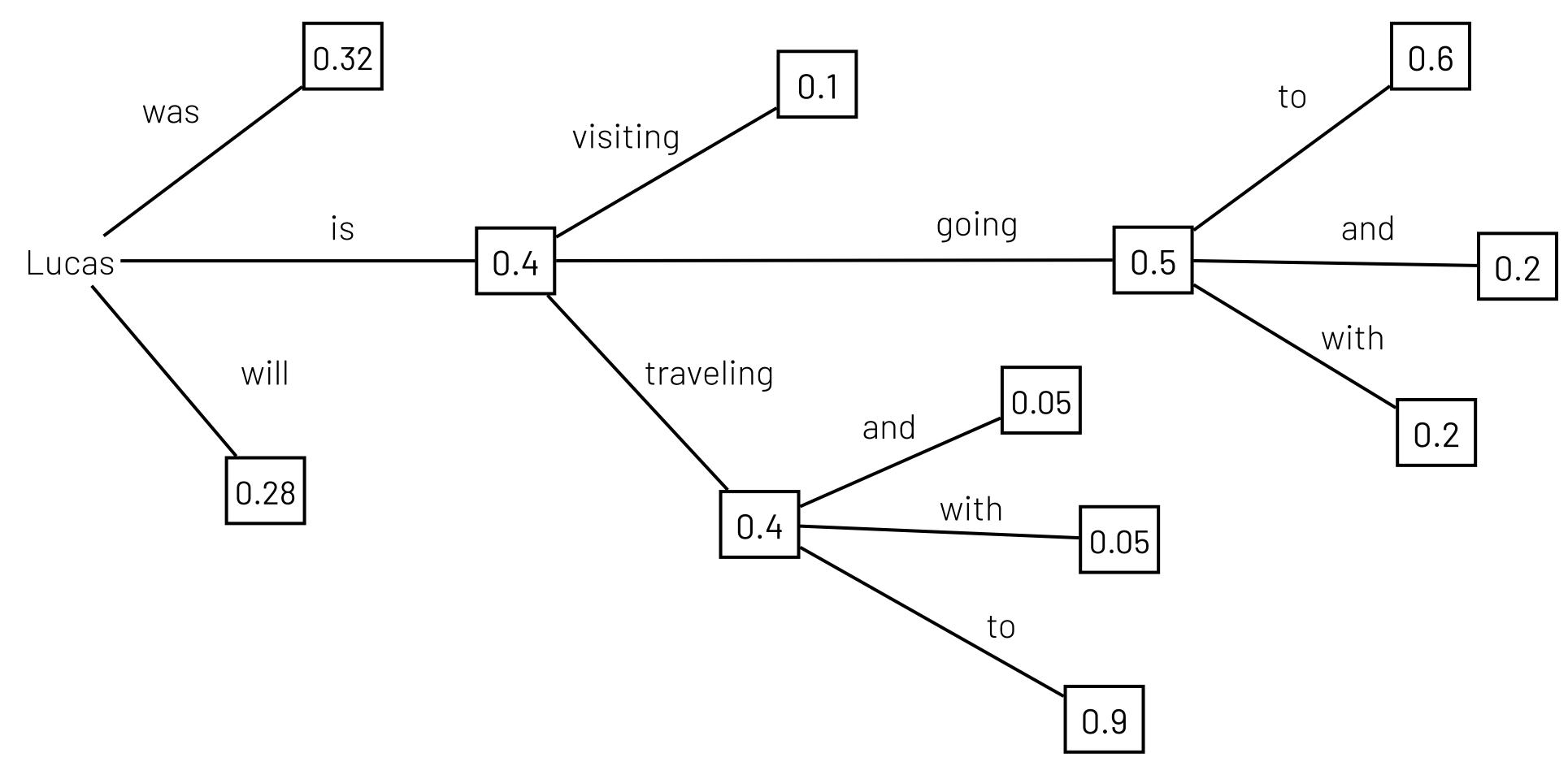


Greedy search is the simplest algorithm for decoding seq2seq models. It consists of selecing the most likely word at each decoding step:



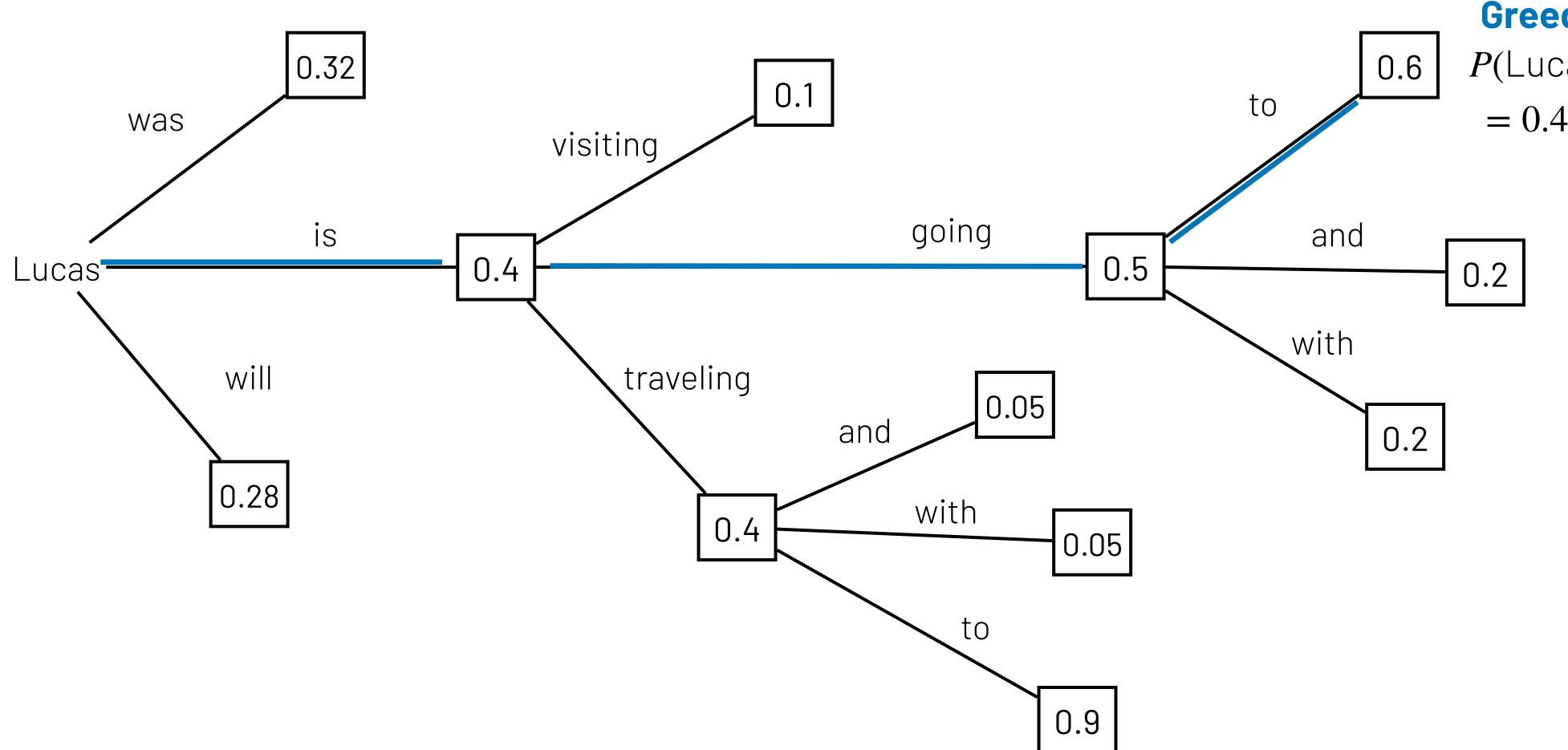
11

Visualizing the Greedy Seach Problem



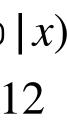
UFV

Visualizing the Greedy Seach Problem

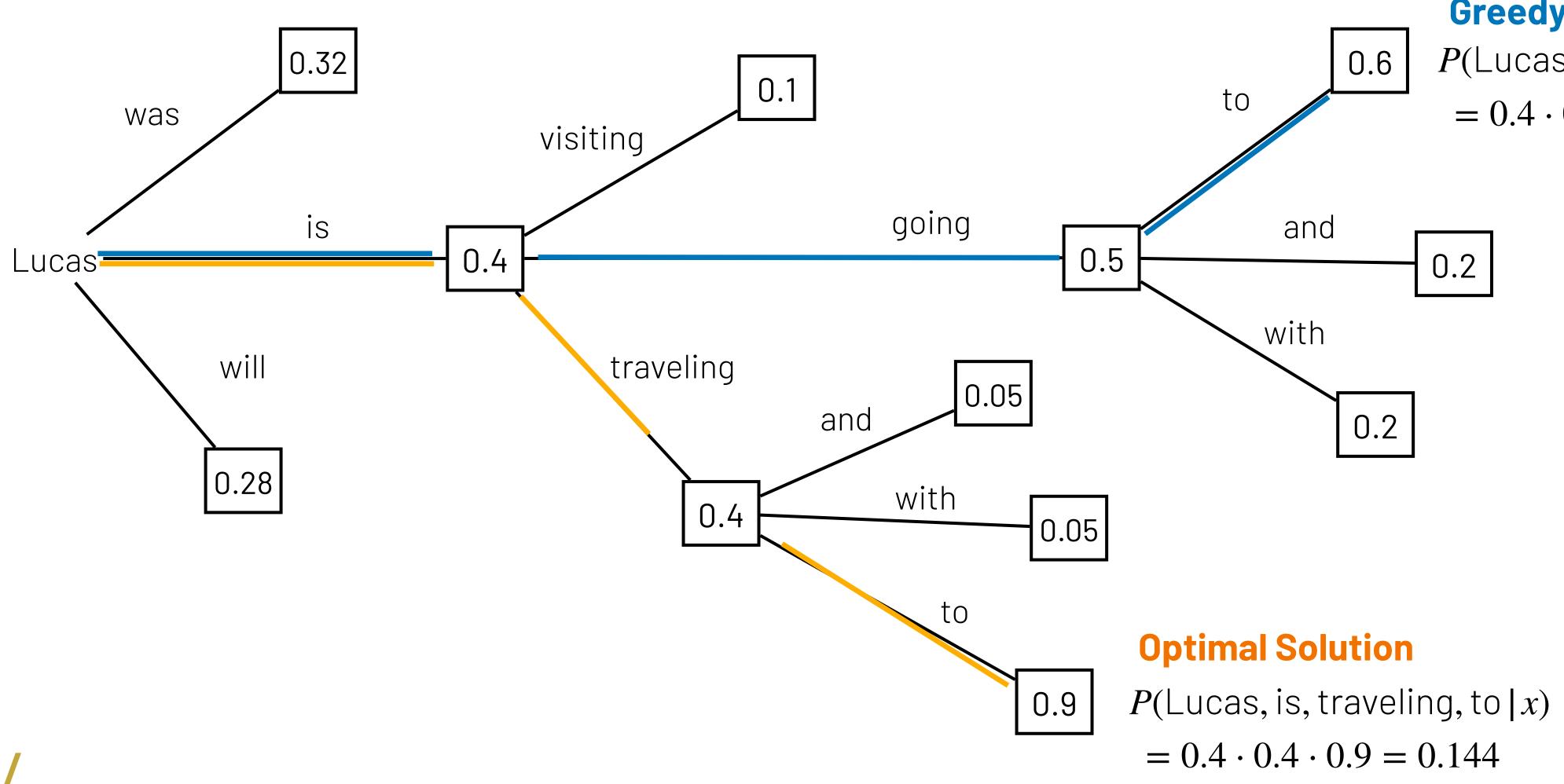


Greedy Search

P(Lucas, is, going, to | x) $= 0.4 \cdot 0.5 \cdot 0.6 = 0.12$

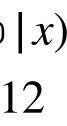


Visualizing the Greedy Seach Problem



Greedy Search

P(Lucas, is, going, to | x) $= 0.4 \cdot 0.5 \cdot 0.6 = 0.12$



Beam Search Decoding

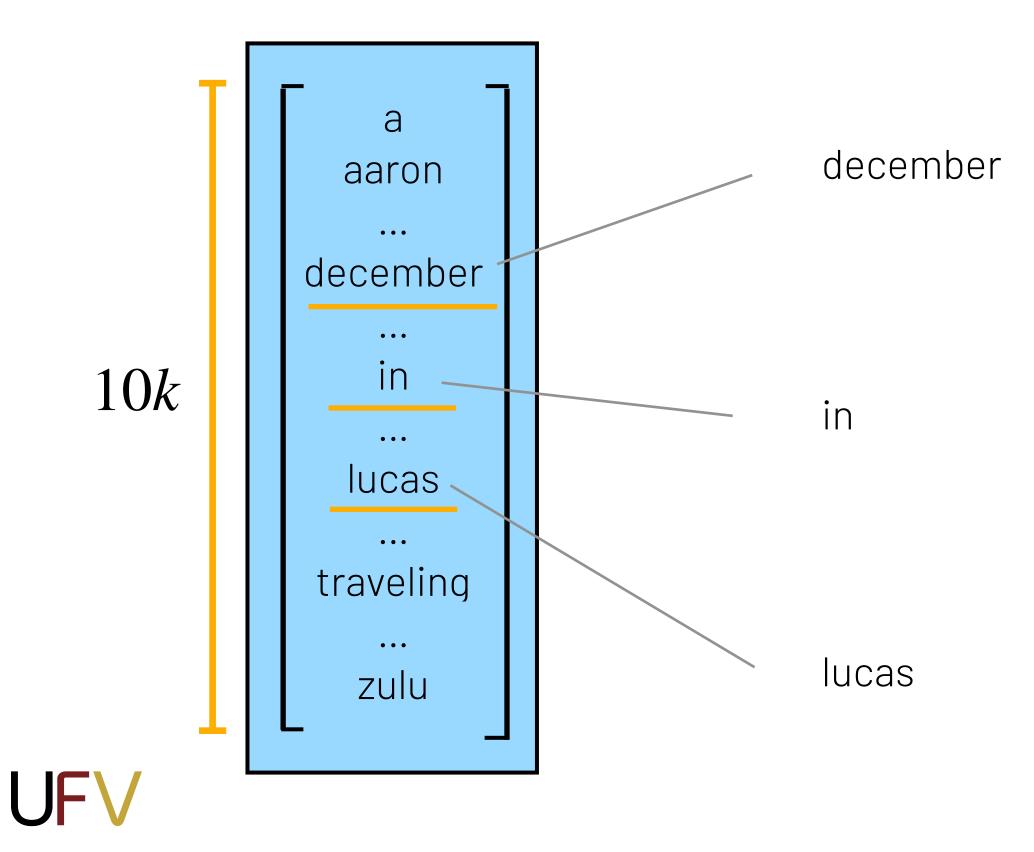
solutions at each decoding step:

Beam search is a local search algorithm that improves upon Greedy Seach by simulating b

Beam Search Decoding

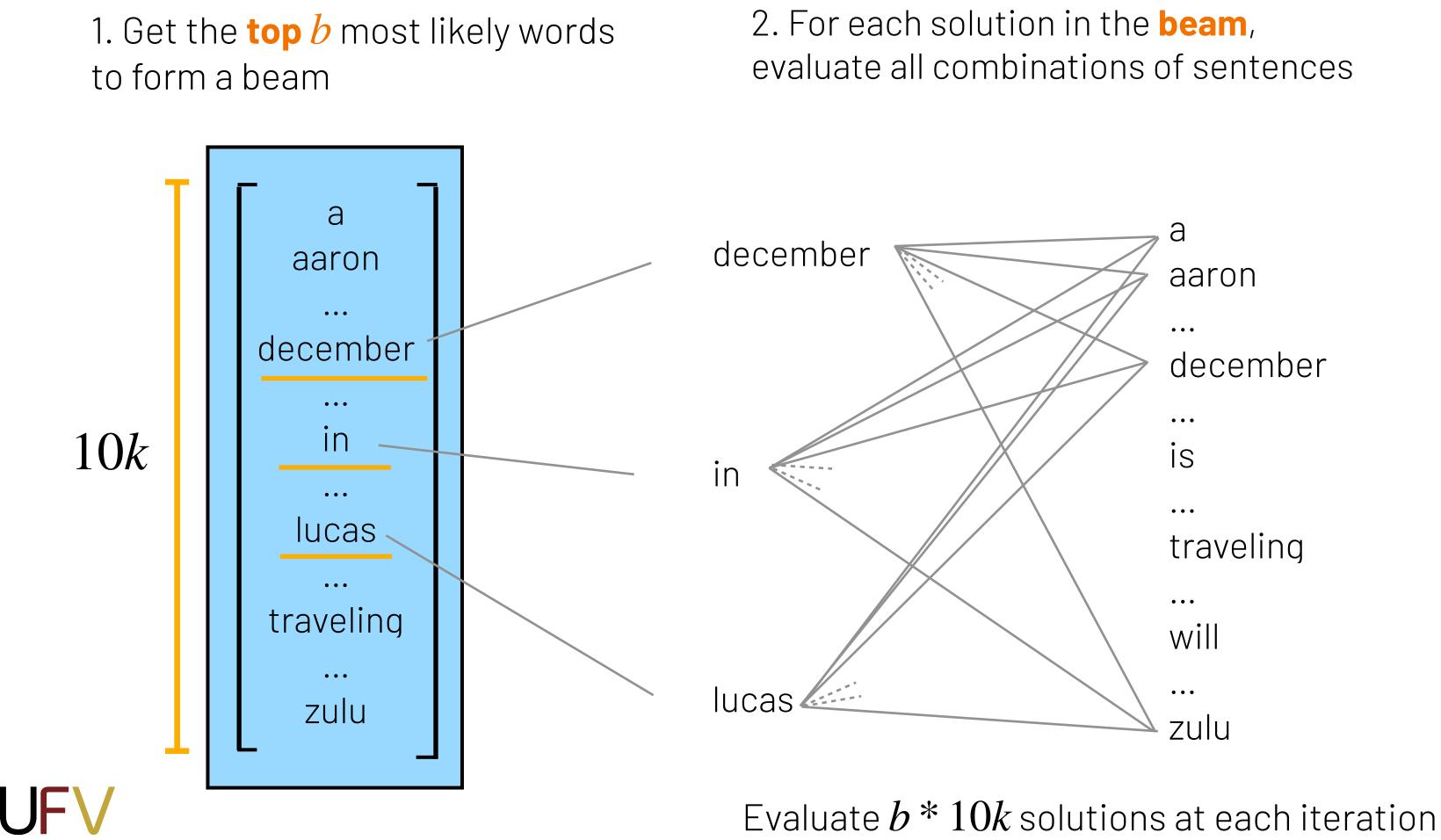
solutions at each decoding step:

1. Get the **top** *b* most likely words to form a beam

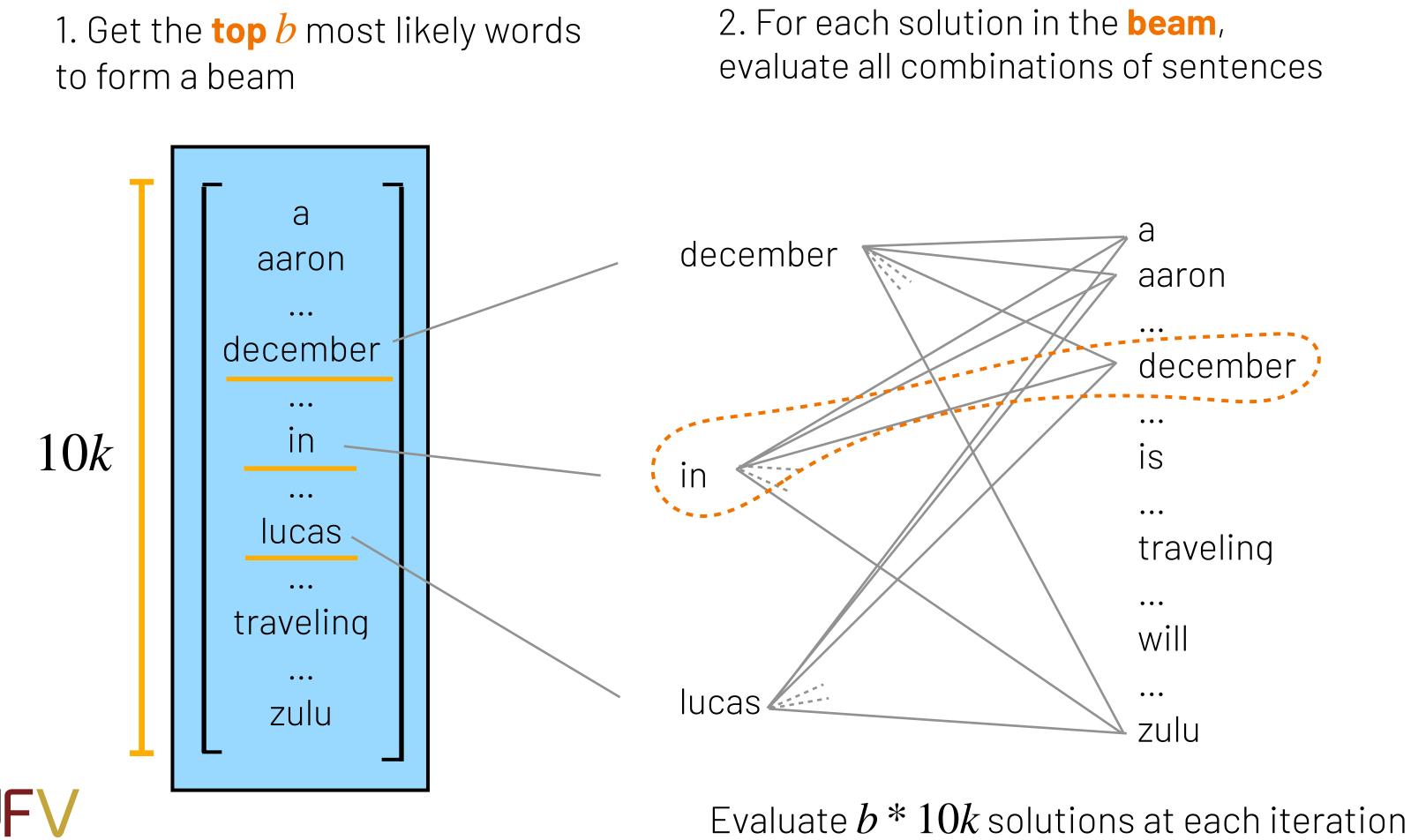


Beam search is a local search algorithm that improves upon Greedy Seach by simulating b

solutions at each decoding step:

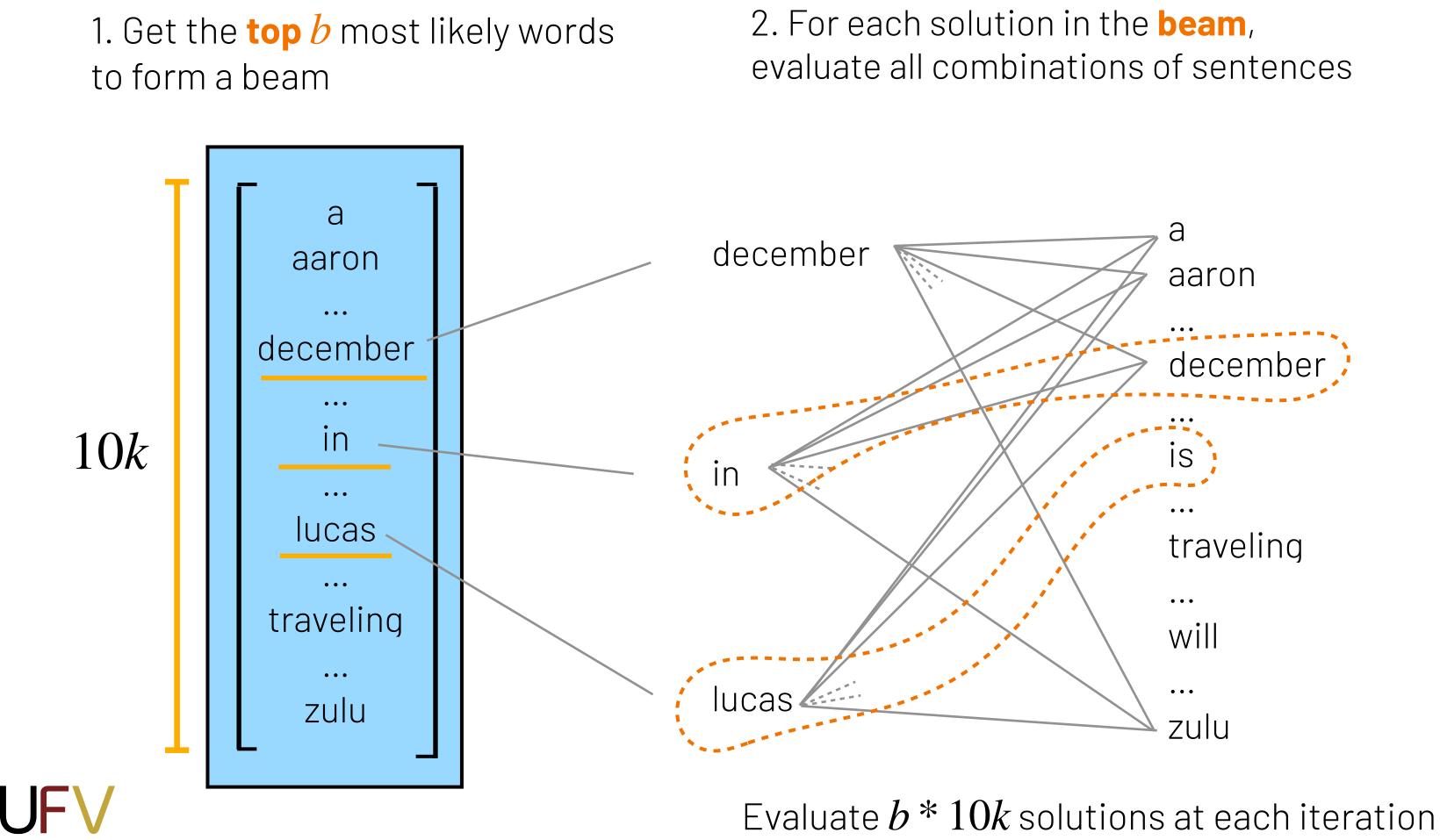


solutions at each decoding step:



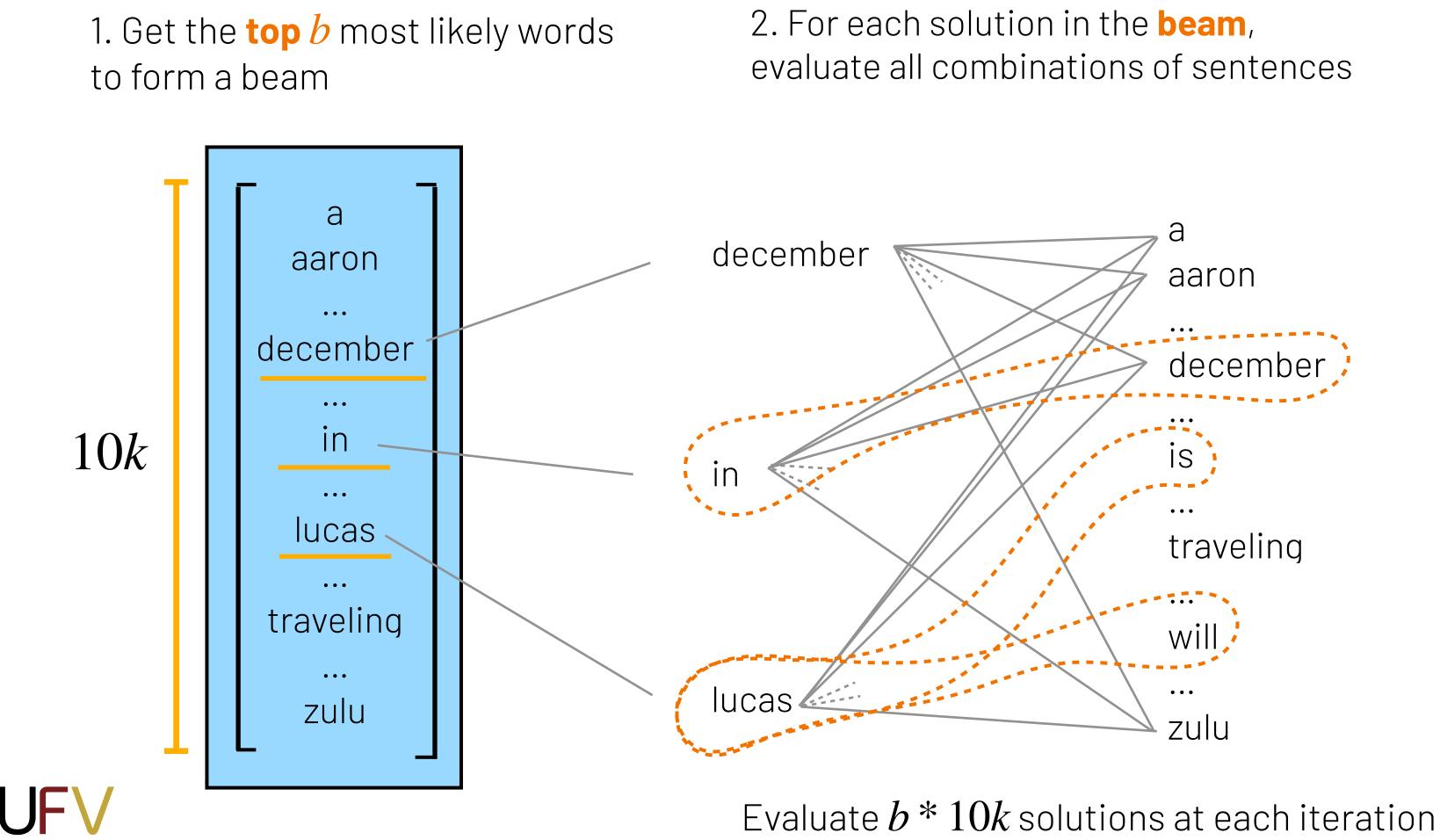
3. Get the **top** *b* most likely sequences

solutions at each decoding step:



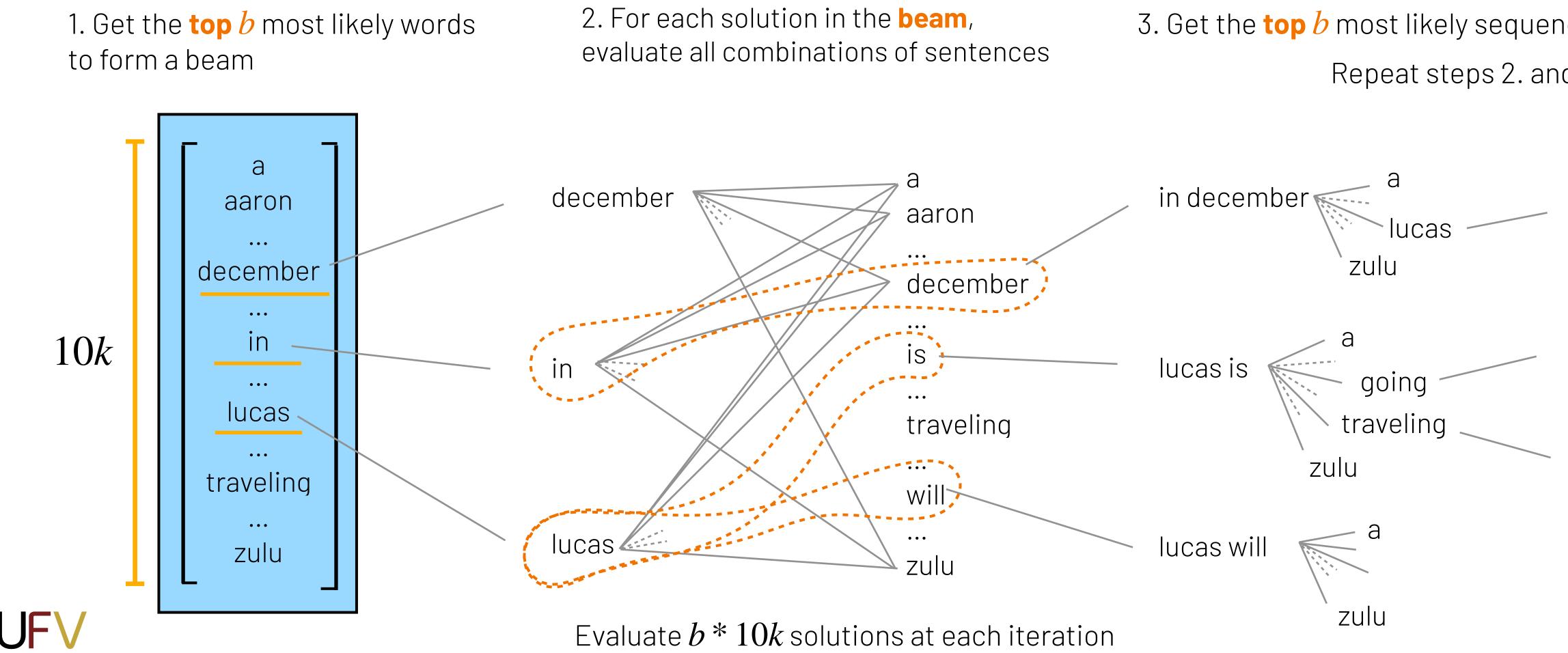
3. Get the **top** *b* most likely sequences

solutions at each decoding step:



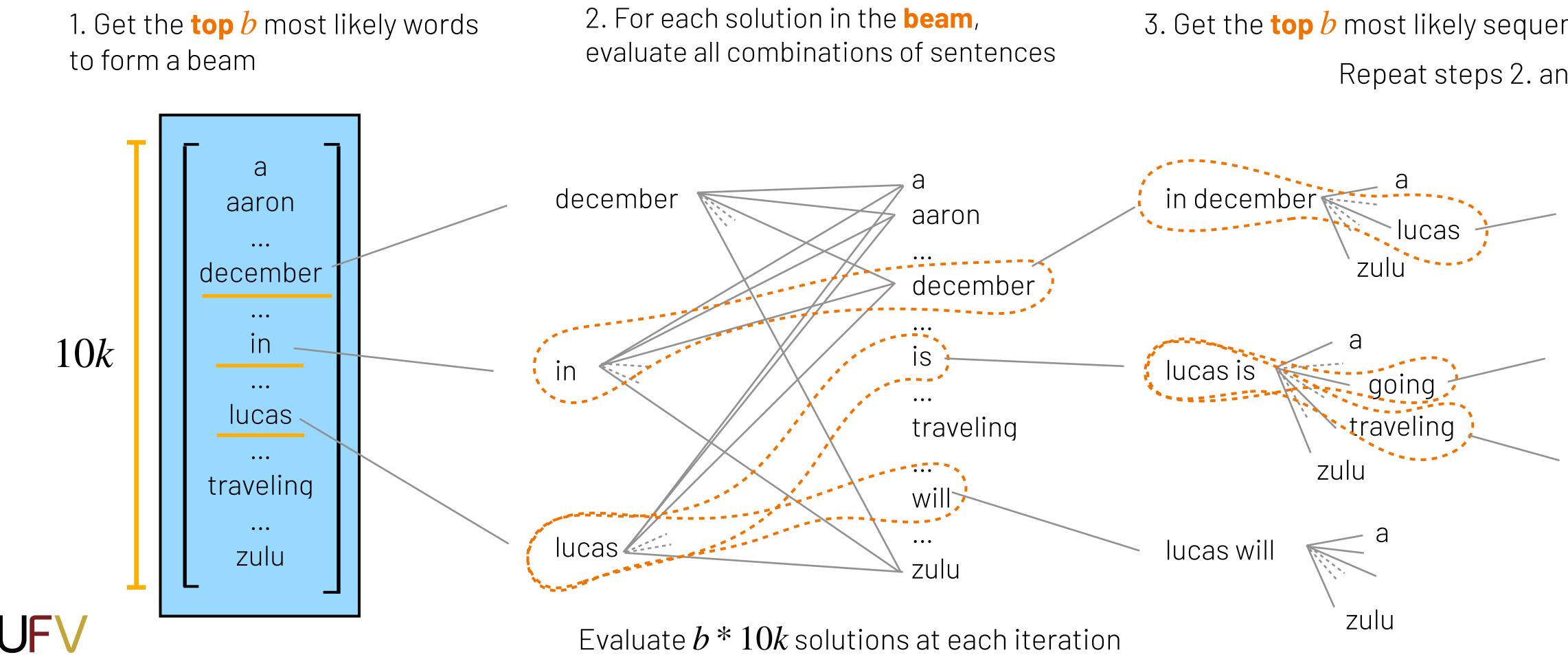
3. Get the **top** *b* most likely sequences

solutions at each decoding step:



- 3. Get the **top** *b* most likely sequences Repeat steps 2. and 3.

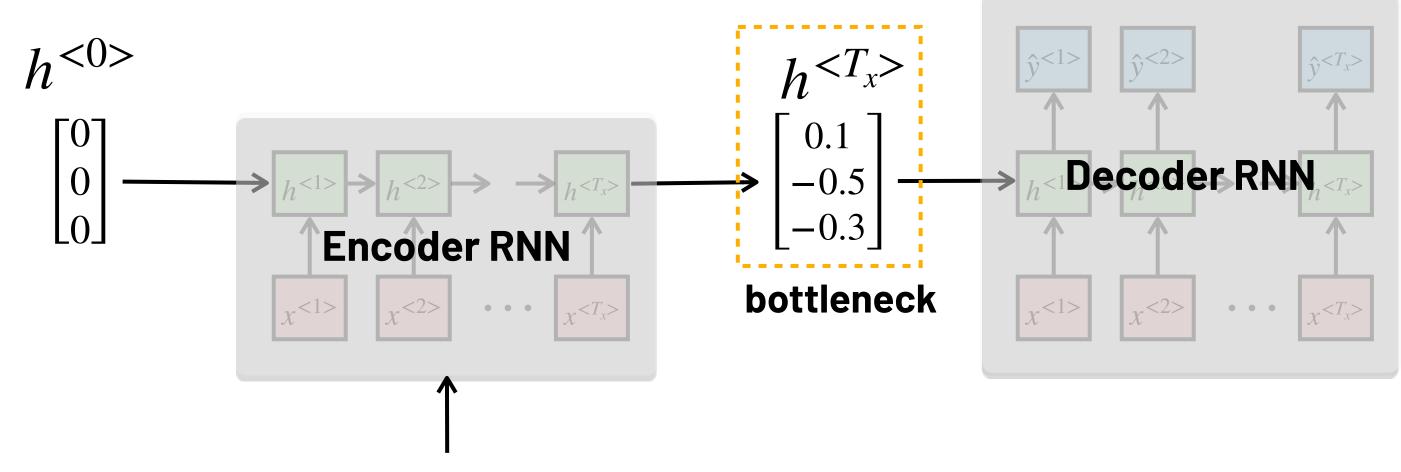
solutions at each decoding step:



- 3. Get the **top** *b* most likely sequences Repeat steps 2. and 3.

Decoding Long Sequences

que será realizada na Universidade Federal do Rio de Janeiro. Ele irá com um de seus alunos."



x = "Lucas is traveling to Rio in December to attend a conference about music and artificial intelligence that will be hosted at the Federal University of Rio de Janeiro. He will go with one of his students."

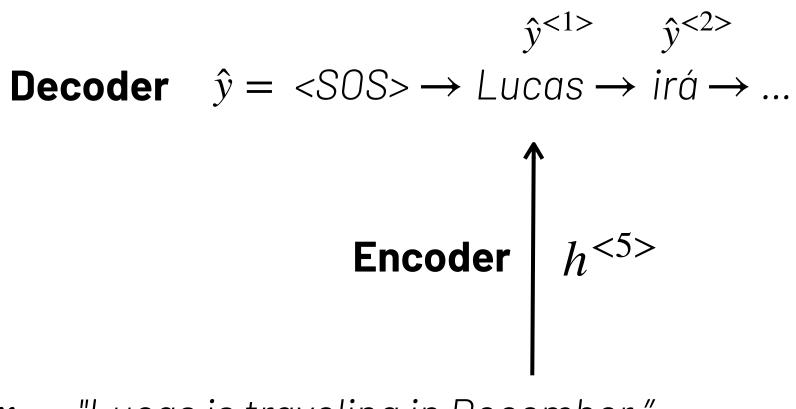
- Regardeless of the decoding strategy, it is difficult for these seq2seq models to translate long sequence because they have to compress the entire input sequence in hidden state $h^{< T_x >}$:
 - "Lucas irá viajar ao Rio em dezembro para participar de uma conferência sobre música e inteligência artificial
 - ▶ To decode the correct pronoum (*Ele*), the **Encoder** has to carry the information about the subject (Lucas) from the beginning of the input.
 - This is hard because the encoder updates hsequentially

Attention: Intuition

The idea behind **attention** is to allow the **decoder** to look at each input word at every decoding step t, instead of memorizing the whole input sequence into a single hidden state $h^{< T_x >}$

Without attention

(Memorize the whole sequence before decoding)

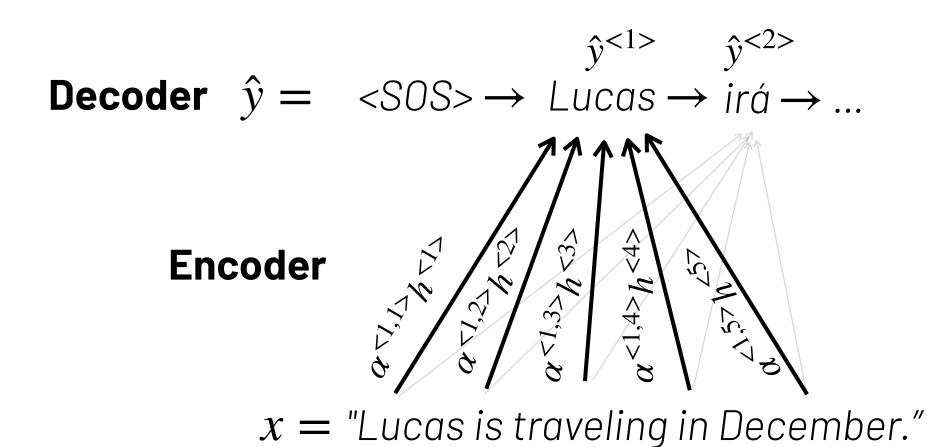


x = "Lucas is traveling in December."

Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate

With attention

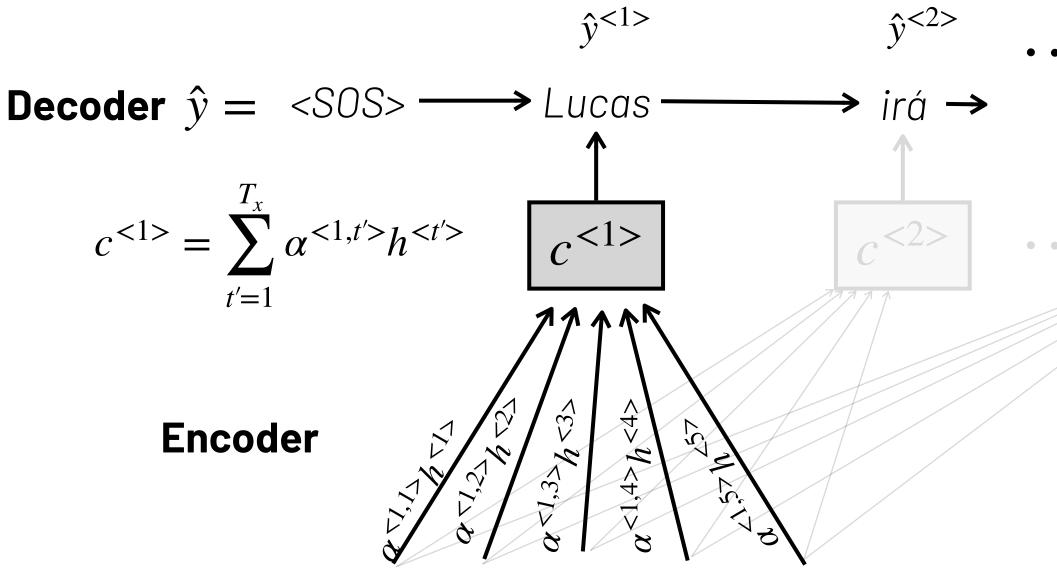
(Look at each input word at every decoding step *t*)



 $\alpha^{<t,t'>}$ are weights representing how much "attention" the decoder should give to word $x^{<t'>}$ when decoding the word $\hat{y}^{<t>}$

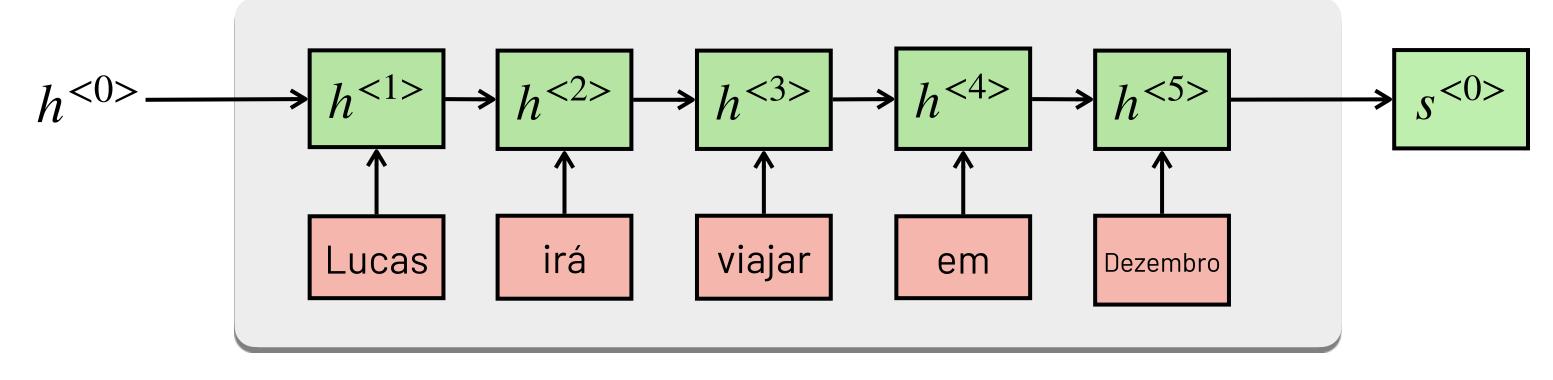
The Context Vector

The weighted hidden states are summed to form a context vector $c^{<t>}$ for each decoding step t. The context vector emphasizes the words that are more important for a particular decoding step



 $\stackrel{\hat{y}^{< T_{y} >}}{\rightarrow} \text{Dezembro} \qquad \alpha^{< 1, 1 >} h^{< 1 >} = 0.79 \cdot \begin{bmatrix} -0.5 \\ 0 \\ 1 \end{bmatrix}$ $\begin{array}{c} + & \begin{bmatrix} 1 \\ 0.3 \\ 0.1 \\ -0.5 \end{bmatrix} \\ \alpha^{<1,2>}h^{<1>} = 0.10 \cdot \begin{bmatrix} 0.3 \\ 0.1 \\ -0.5 \end{bmatrix} \\ \alpha^{<1,3>}h^{<3>} = 0.05 \cdot \begin{bmatrix} -0.3 \\ 0.4 \\ 0.9 \end{bmatrix} = \end{array}$ $\begin{bmatrix} -0.3 \\ 0.4 \end{bmatrix} = \begin{bmatrix} -0.37 \\ 0.018 \end{bmatrix}$ 0.9 0.805 $\alpha^{<1,4>}h^{<4>} = 0.05 \cdot \begin{bmatrix} 0.2 \\ -0.1 \\ 0.2 \end{bmatrix}$ Note how $c^{<1>}$ is similar $h^{<1>}$ since the x = "Lucas is traveling in December." model is giving more 0 $\alpha^{<1,5>}h^{<5>} = 0.01 \cdot \begin{bmatrix} -0.7 \\ 1 \end{bmatrix}$ attention to $h^{<1>}$ The key challenge of implementing attention is how to compute the weights $\alpha^{<t,t'>}!$ $\alpha^{< t,t'>}$ some up to 1

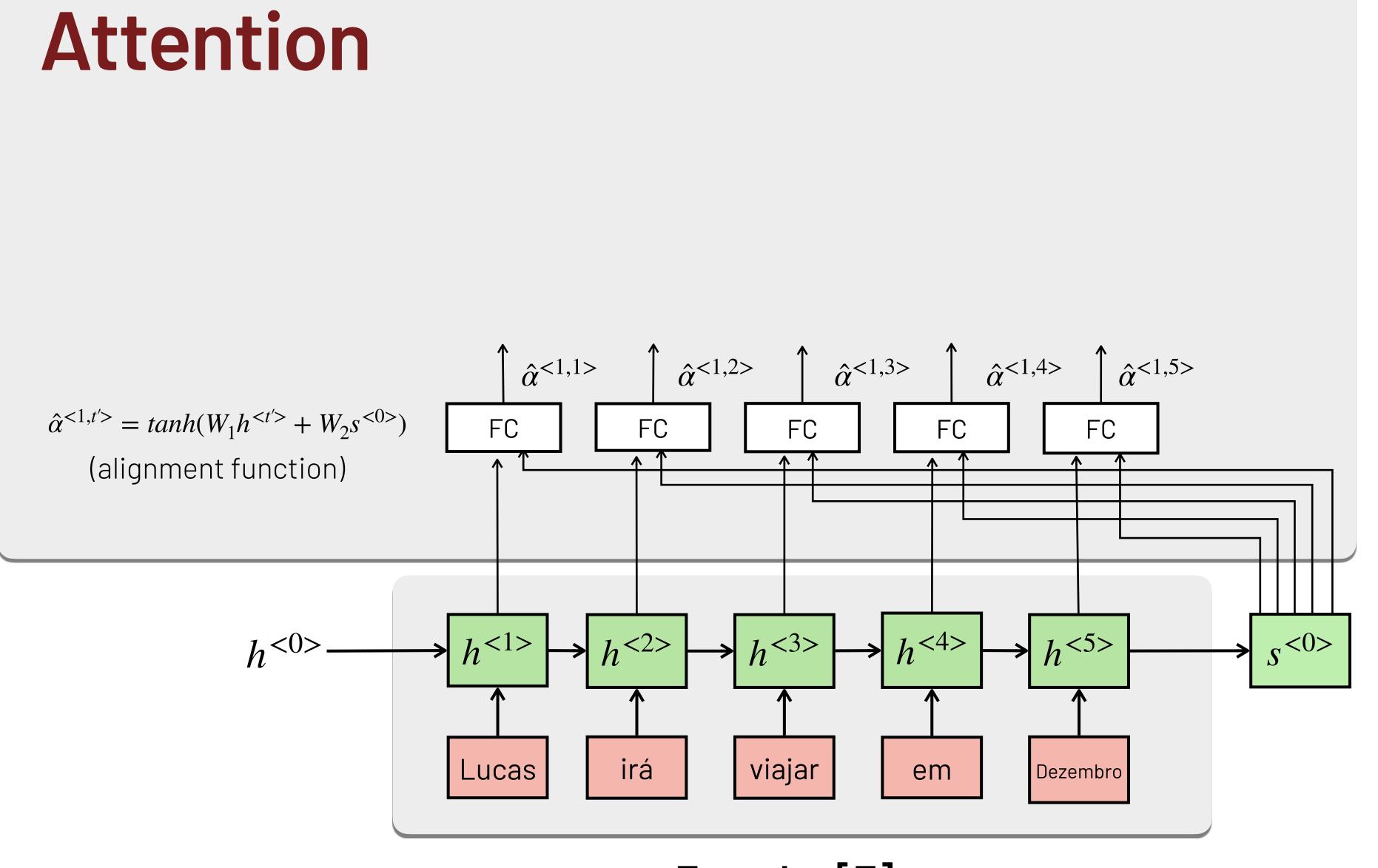
Attention



Encoder[E]

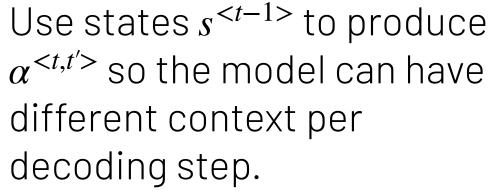
Use states $s^{< t-1>}$ to produce $\alpha^{< t,t'>}$ so the model can have different context per decoding step.





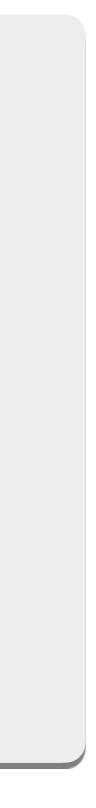
UFV

Encoder[E]



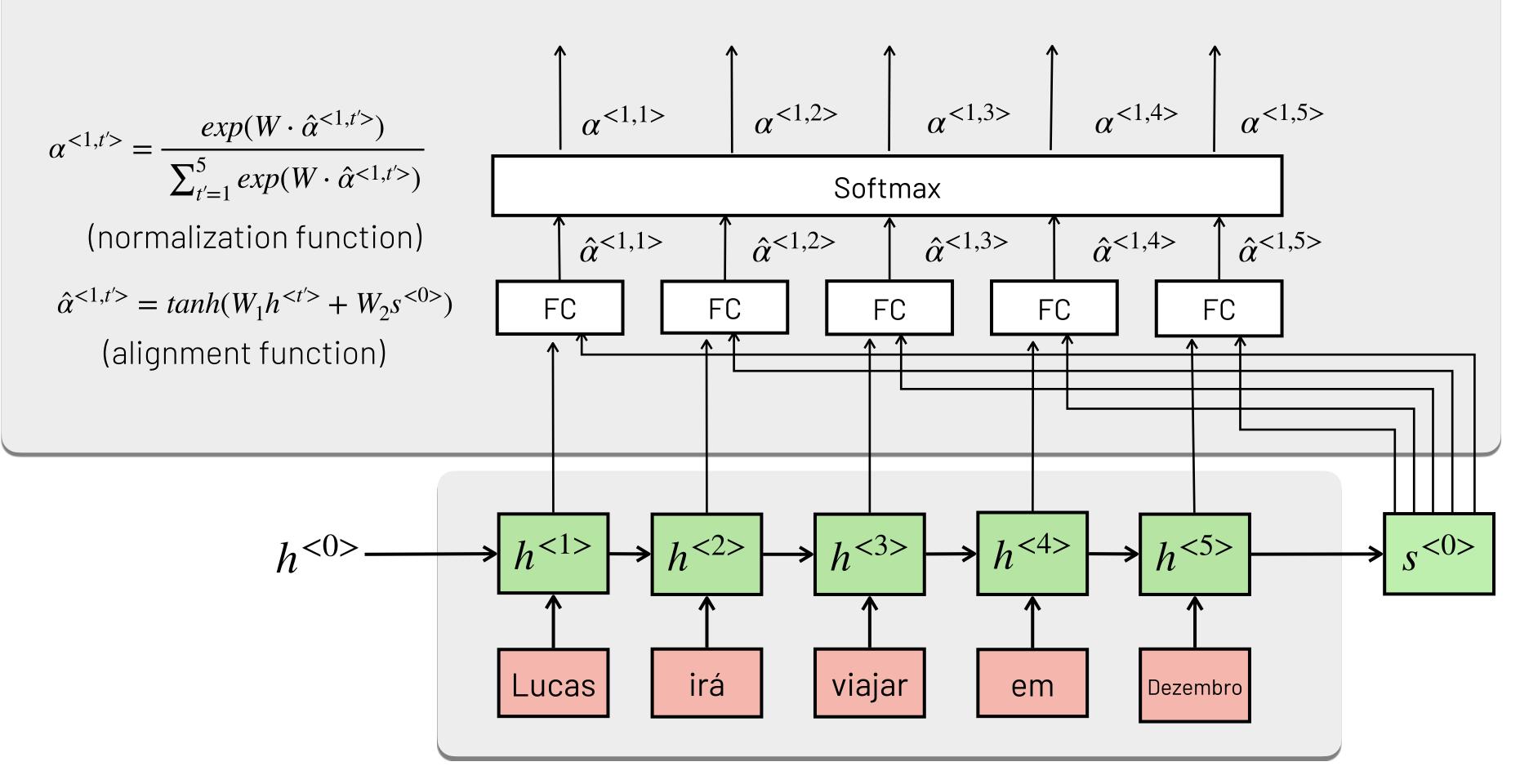
Decoder[D]

<SOS>



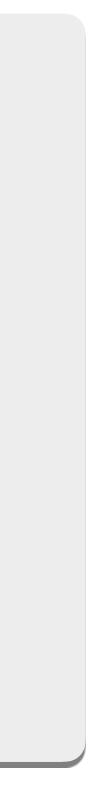
Attention

UFV



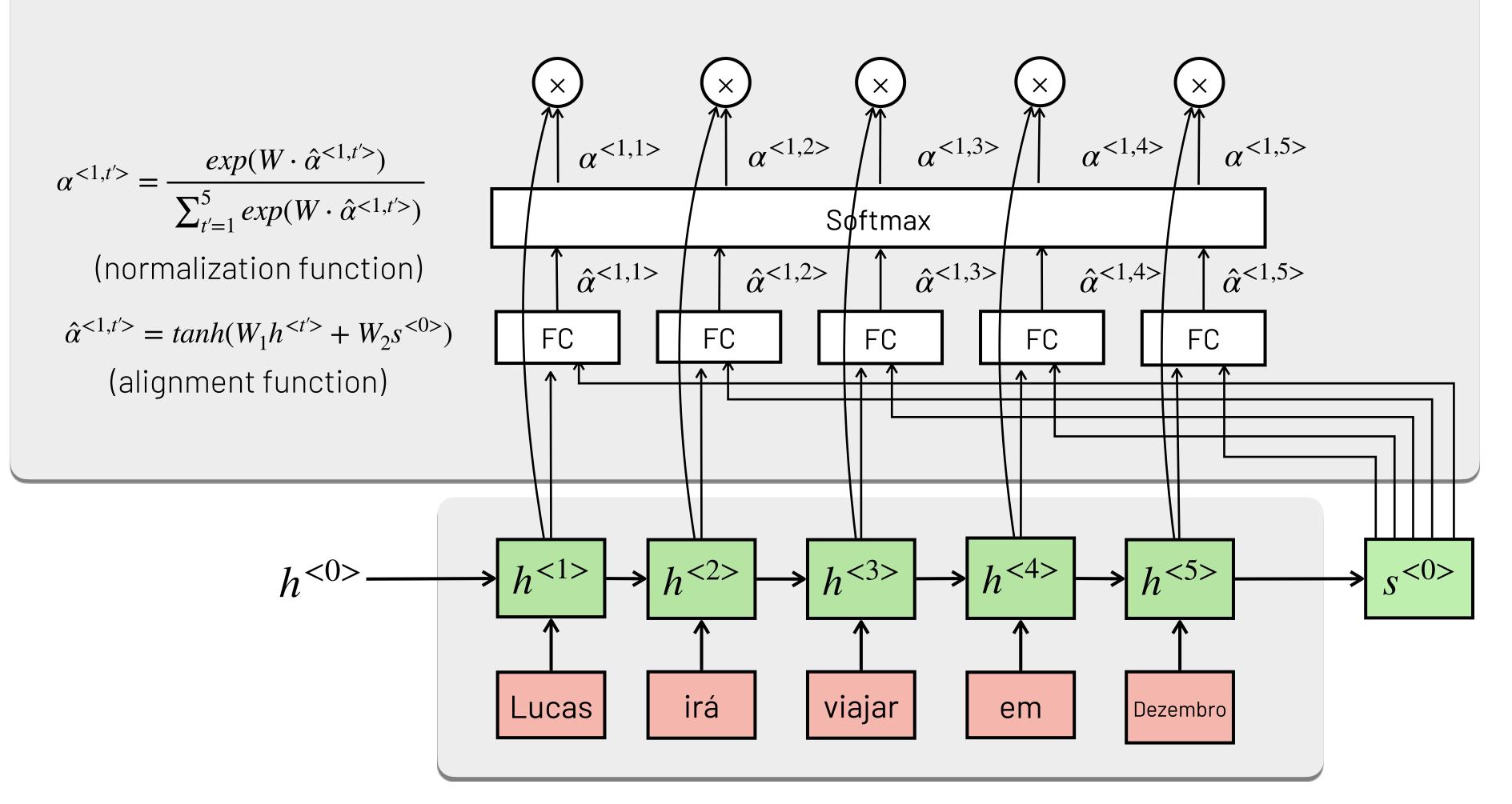
Encoder[E]

Use states $s^{< t-1>}$ to produce $\alpha^{<t,t'>}$ so the model can have different context per decoding step.



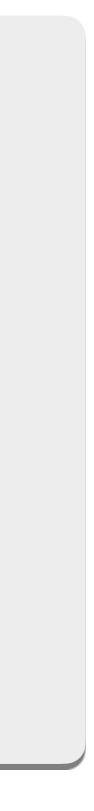
Attention

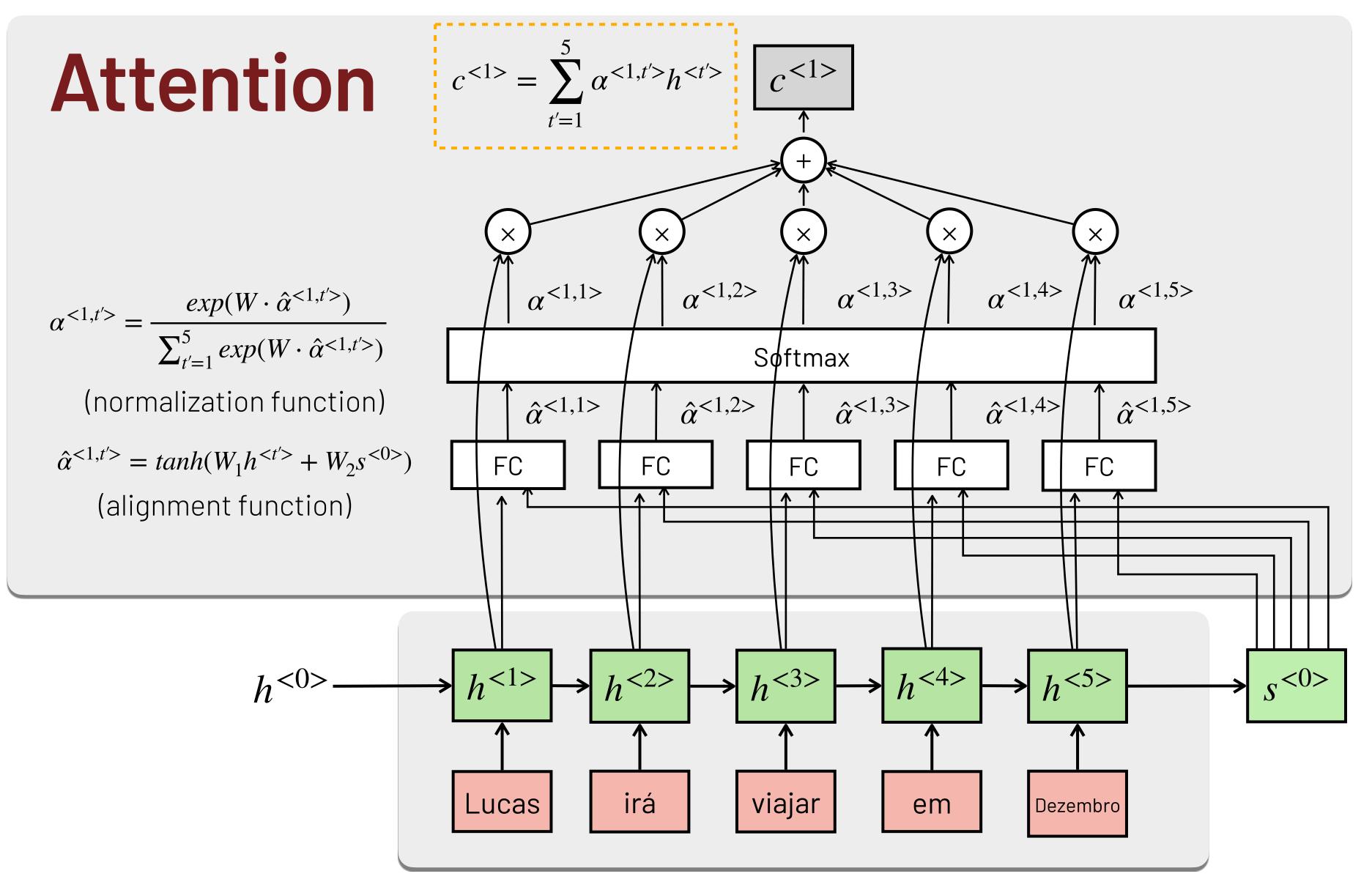
UFV



Encoder[E]

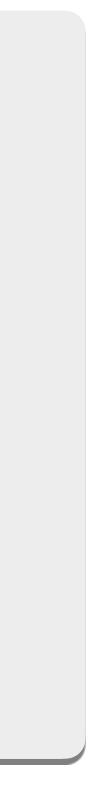
Use states $s^{< t-1>}$ to produce $\alpha^{<t,t'>}$ so the model can have different context per decoding step.

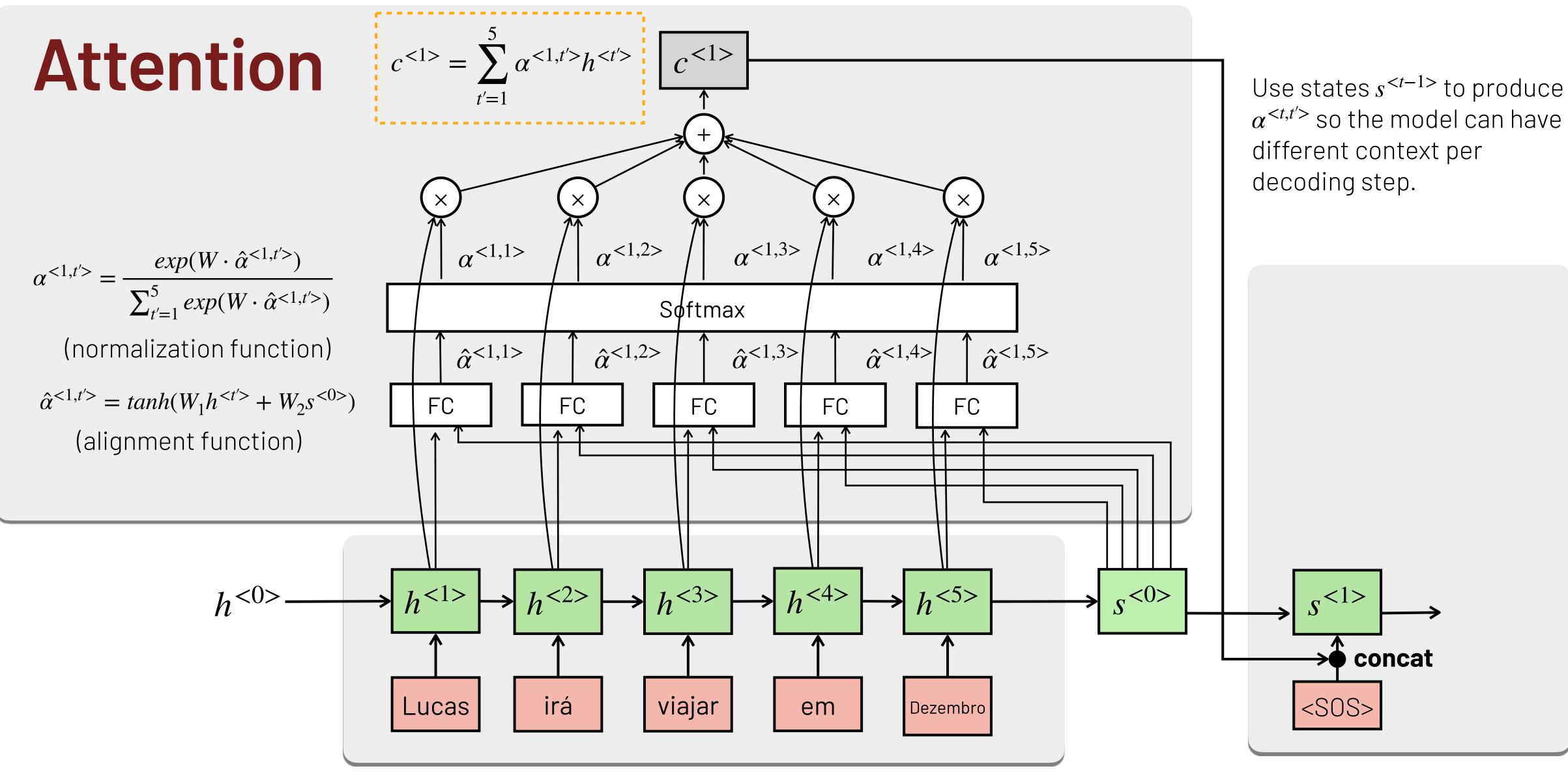




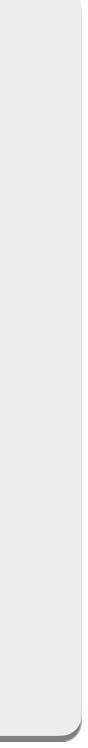
(JFV

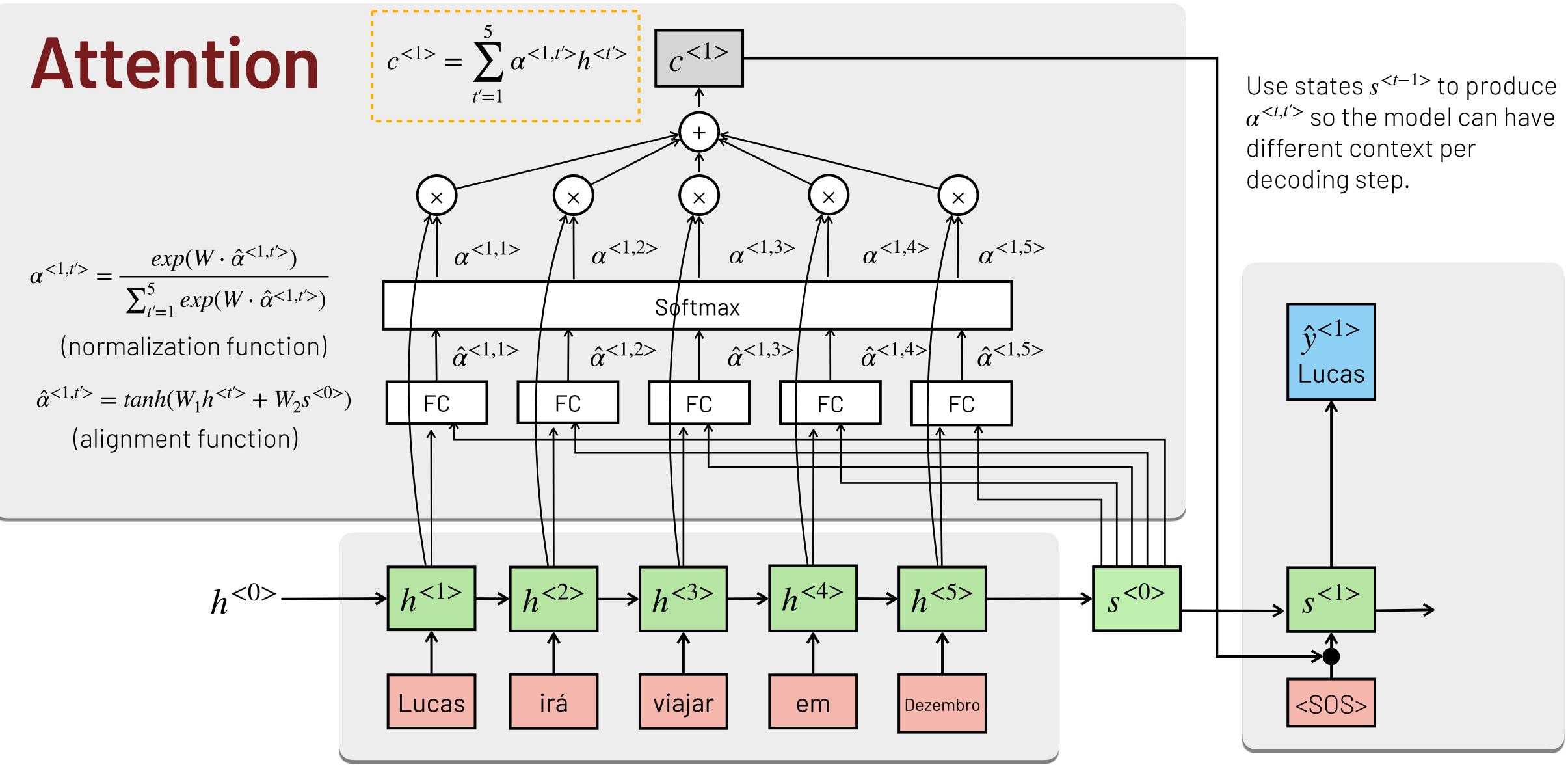
Use states $s^{< t-1>}$ to produce $\alpha^{< t,t'>}$ so the model can have different context per decoding step.



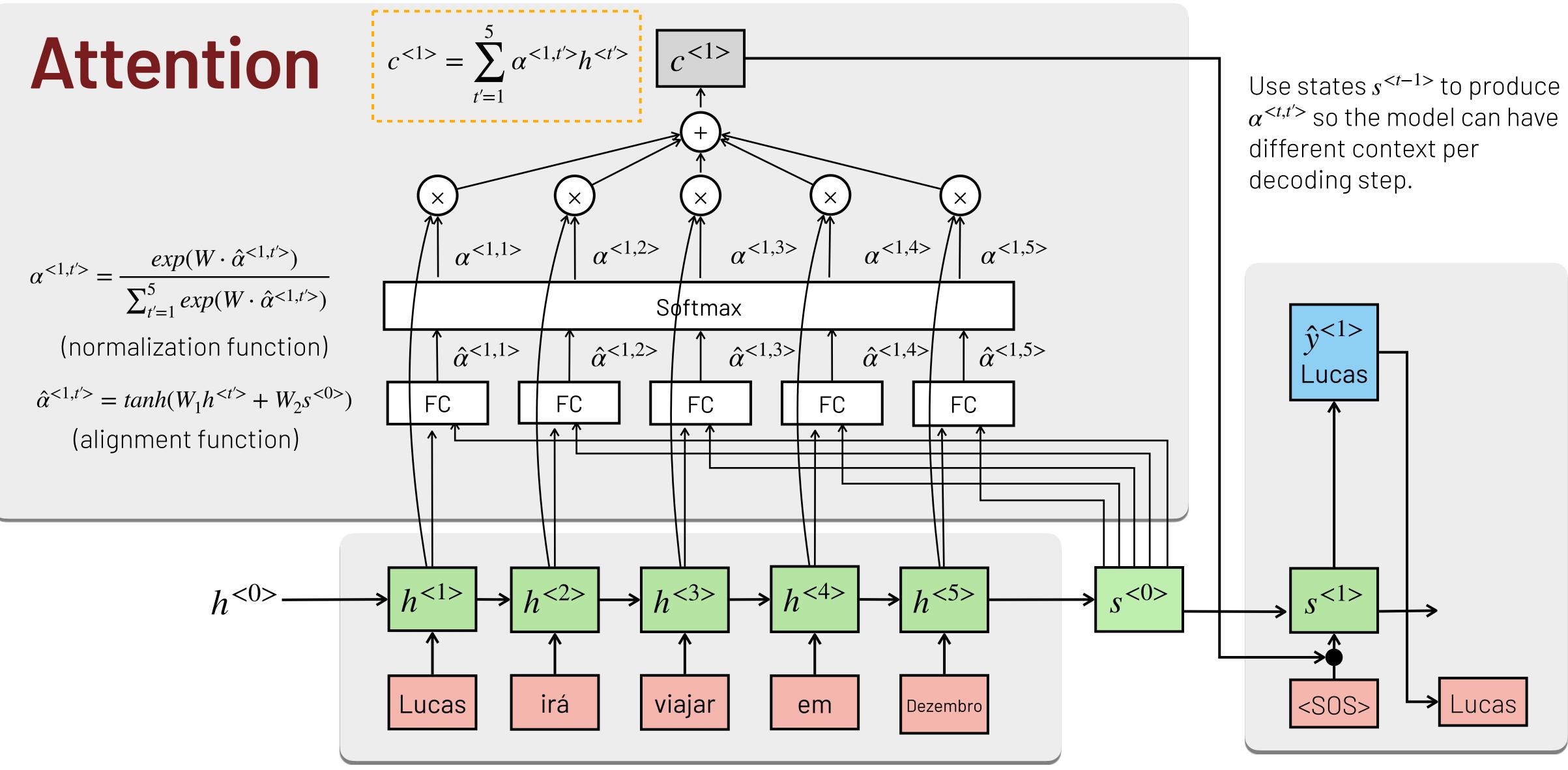


UFV

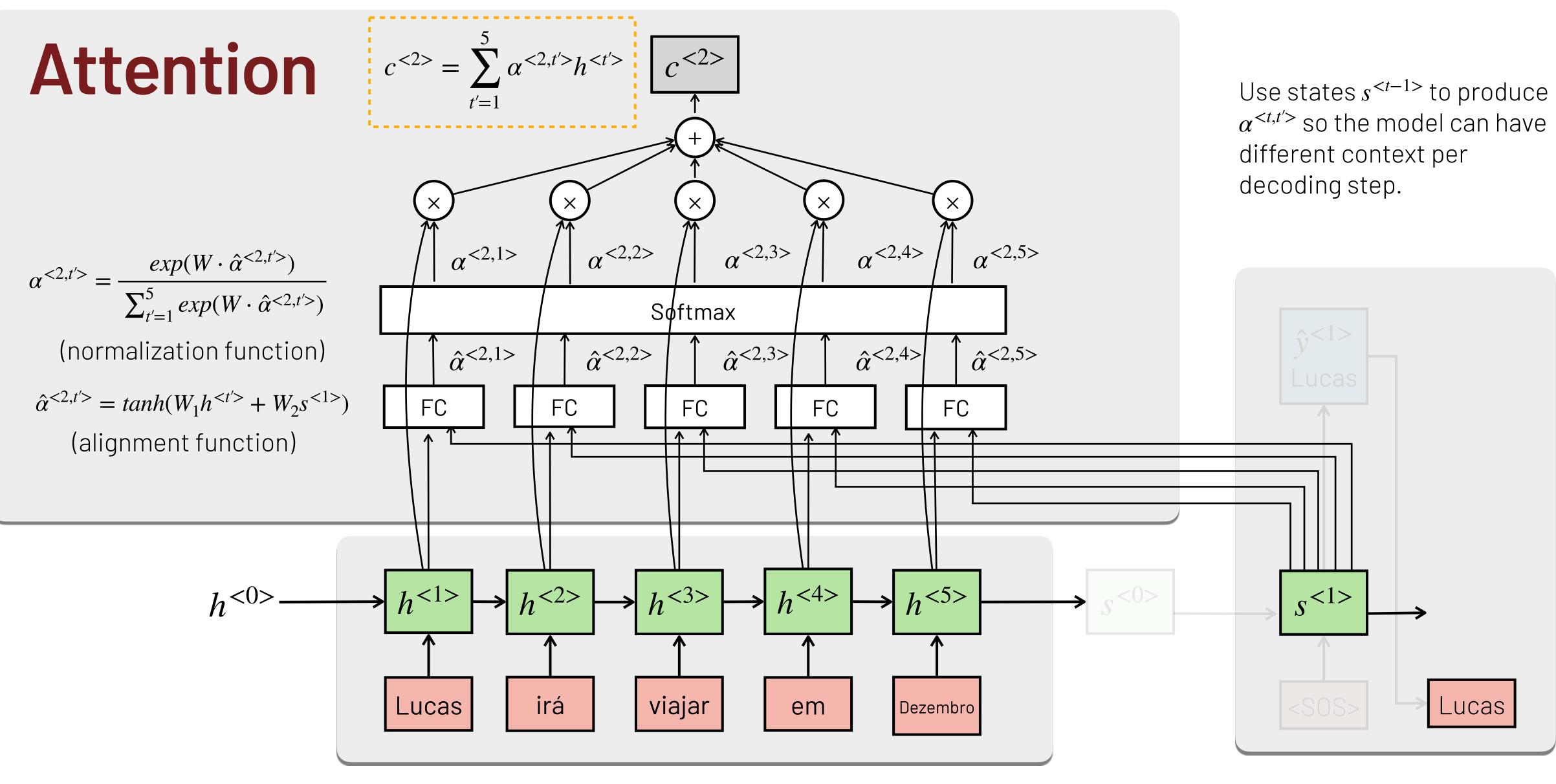




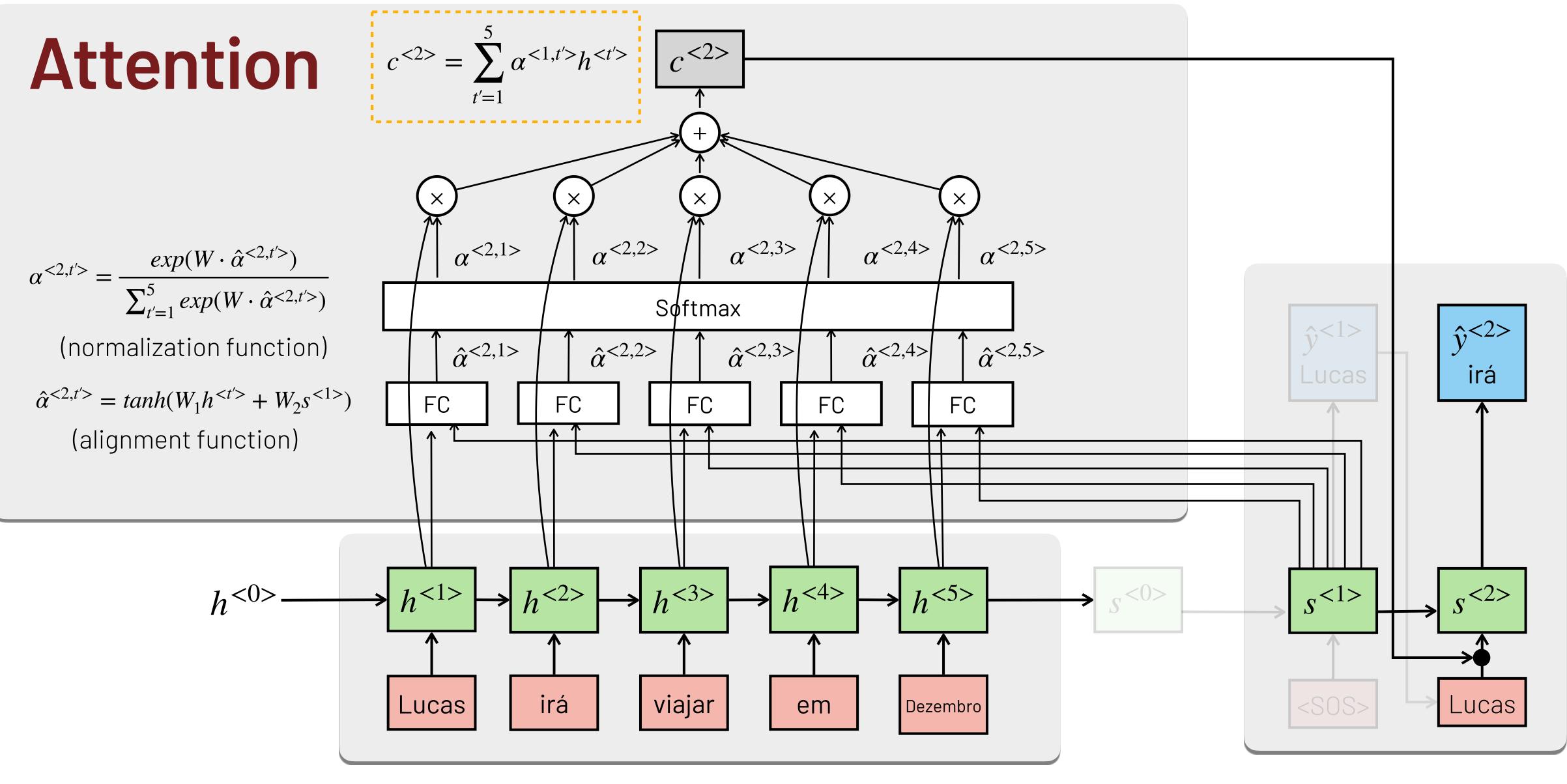
(JFV



(JFV



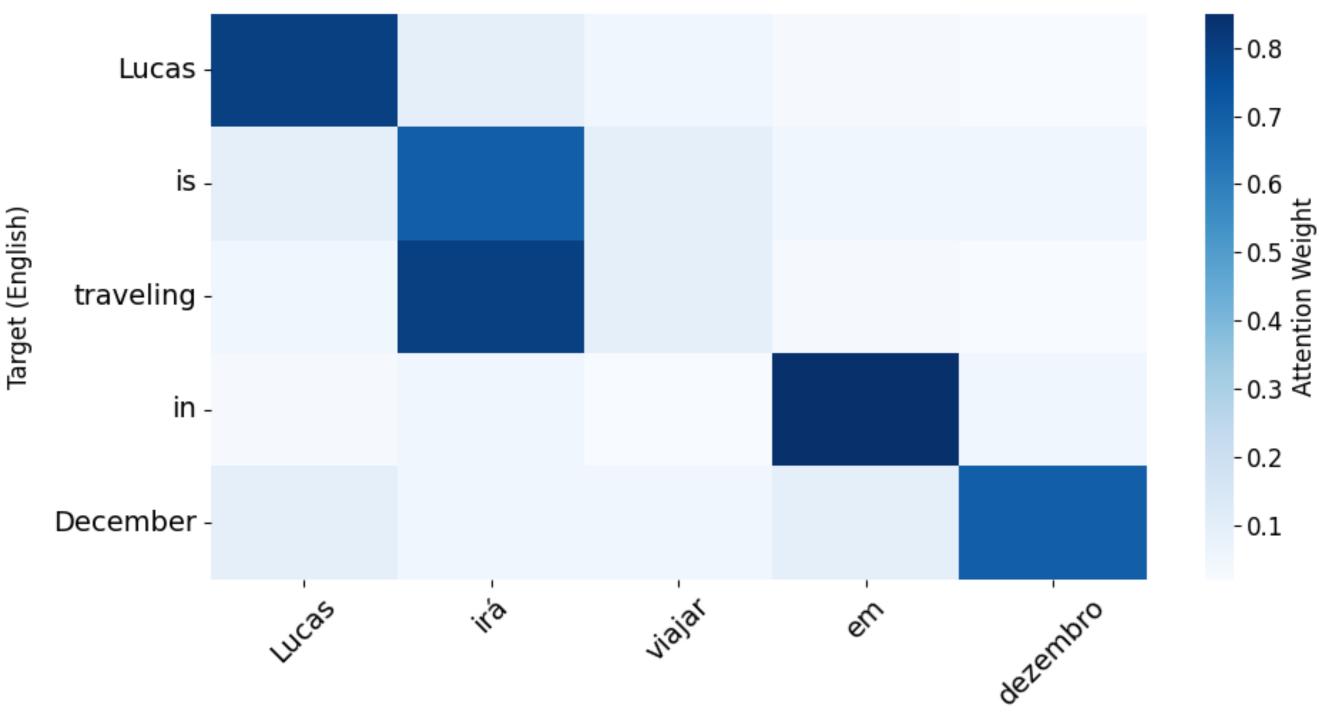
(JFV



(JFV

Visualizing Attention

as it decodes the translation.



Visualizing the attention weights $\alpha^{\langle t,t'\rangle}$ helps analyzing how the model is attending to different words

Bahdanau Attention Weights Visualization

Source (Portuguese)

Implementing Attention in PyTorch

class BahdanauAttention(nn.Module): def __init__(self, hidden_dim): super().___init__() self.W1 = nn.Linear(hidden_dim, hidden_dim, bias=False) # For encoder outputs (h_j) self.W2 = nn.Linear(hidden_dim, hidden_dim, bias=False) # For decoder state (s_i) self.v = nn.Linear(hidden_dim, 1, bias=False) # For scoring nn.init.xavier_uniform_(self.W1.weight) nn.init.xavier_uniform_(self.W2.weight) nn.init.xavier_uniform_(self.v.weight) def forward(self, hidden, encoder_outputs, mask): # hidden (s_i): [batch_size, hidden_dim] # encoder_outputs (h_j): [batch_size, src_len, hidden_dim] # Energy calculation: e_ij = v^T tanh(W1h_j + W2s_i) e = self.v(torch.tanh(self.W1(encoder_outputs) + self.W2(hidden).unsqueeze(1))).squeeze(-1) # Apply mask and get attention weights: a_ij = softmax(e_ij) a = F.softmax(e.masked_fill(mask == 0, -1e10), dim=1) return a

UFV

Next Lecture

L17: Transformers

Solving sequential problems using only attention (without recurrence).

