
INF721

L16: Attention

Deep Learning

2024/2

 1

Logistics

Last Lecture

‣ Problems of one-hot encoding

‣ Word Embeddings

‣ Word2Vec

‣ GloVe

2

Lecture Outline

‣ Machine Translation

‣ Decoding

‣ Greedy Search

‣ Beam Search

‣ Attention in RNNs

‣ Visualizing Attention

3

Machine Translation

4

Portuguese English

Olá, como vai você? Hello, how are you?

O livro está em cima da mesa. The book is on the table.

Lucas irá viajar ao Rio em Dezembro. Lucas is travelling to Rio in December.

Em Dezembro, Lucas irá viajar ao Rio. Lucas is travelling to Rio in December.

…. ….

Given a dataset of sentence pairs:

(,),

we want to learn a model that maps into .

x = {x<1>, x<2>, …, x<Tx>} y = {y<1>, y<2>, …, y<Ty>}
x y

Seq2Seq Models

5

h<0>

 W[E]
h

Lucas
x<1>

h<1>

irá

x<2>

h<2>

viajar
x<3>

h<3>

Dezembro
x<Tx>

h<Tx>

 W[E]
x

h<1> h<2> h<3> h<Ty>

Lucas

̂y<1>
is
̂y<2>

traveling
̂y<3>

<EOS>
̂y<Ty>

Encoder [E] Decoder [D]

<SOS>
y<0>

Lucas
̂y<1>

is
̂y<2>

December
̂y<Ty−1>

We can approach this problem using a Seq2Seq model, where the encoder process the
input sentence and the decoder generates the translated sentence x y

 is a vector representation of the entire input sentence h<Tx> x

Decoding

6

Decoding is the problem of finding the most likely translation. Formally, find the sequence
 that maximizes the conditional probability . {y<1>, . . . , y<Ty>} P(y<1>, . . . , y<Ty> |x)

Lucas irá viajar ao Rio em Dezembrox =

‣ Lucas is traveling to Rio in December

‣ Lucas is going to be traveling Rio in December

‣ In December, Lucas will travel to Rio

‣ Lucas is going to a conference in Rio

y =

y =

y =

y =

Decoding algorithms:

‣ Greedy Search

‣ Beam Seach

argmax P(y<1>, . . . , y<Ty> |x)
{y<1>, . . . , y<Ty>}

Objective function:

x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding

7
Lucas irá viajar ao Rio em Dezembro

Encoder RNN
[

0
0
0]

h<0>

0.1
−0.5
−0.3

h<Tx>

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of
selecing the most likely word at each decoding step:

x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding

8
Lucas irá viajar ao Rio em Dezembro

Encoder RNN

0.3
−0.1
0.9

0.1
0.2
0.1
0.3
0.1

<SOS>

Lucas

[
0
0
0]

h<0>

0.1
−0.5
−0.3

h<Tx>

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of
selecing the most likely word at each decoding step:

Lucas

x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding

9
Lucas irá viajar ao Rio em Dezembro

Encoder RNN

0.3
−0.1
0.9

0.5
−1.0
0.2

0.1
0.2
0.1
0.3
0.1

0.0
0.9
0.0
0.1
0.0

<SOS> Lucas

Lucas is

[
0
0
0]

h<0>

0.1
−0.5
−0.3

h<Tx>

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of
selecing the most likely word at each decoding step:

Lucas

is

x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding

10
Lucas irá viajar ao Rio em Dezembro

Encoder RNN

0.3
−0.1
0.9

0.5
−0.5
0.2

0.9
−0.6
−0.1

0.1
0.2
0.1
0.3
0.1

0.0
0.9
0.0
0.1
0.0

0.1
0.0
0.1
0.7
0.1

<SOS> Lucas is

Lucas is going

[
0
0
0]

h<0>

0.1
−0.5
−0.3

h<Tx>

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of
selecing the most likely word at each decoding step:

Lucas

is

going

x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding

11
Lucas irá viajar ao Rio em Dezembro

Encoder RNN

0.3
−0.1
0.9

0.5
−1.0
0.2

0.9
−0.6
−0.1 [

1.0
−0.3
−0.7]

0.1
0.2
0.1
0.3
0.1

0.0
0.9
0.0
0.1
0.0

0.1
0.0
0.1
0.7
0.1

0.1
0.1
0.1
0.2
0.5

<SOS> Lucas is Dec.

Lucas is going <EOS>

[
0
0
0]

h<0>

0.1
−0.5
−0.3

h<Tx>

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of
selecing the most likely word at each decoding step:

Lucas

is

going
<EOS>

Since “Lucas is going" is more likely than “ Lucas is
travelling” in the English language, Greedy Seach
will likely produce a worse translation :

‣ Lucas is going to be traveling Rio in December

‣ Lucas is traveling to Rio in December

̂y
̂y =

y =

Visualizing the Greedy Seach Problem

12

Lucas
is

was

will

visiting

going

traveling

0.4

0.1

0.4

0.5

0.28

0.32

and
0.2

0.6

0.2
0.05

0.05

0.9

with

and

to

to

with

Visualizing the Greedy Seach Problem

13

Lucas
is

was

will

visiting

going

traveling

0.4

0.1

0.4

0.5

0.28

0.32

and
0.2

0.6

0.2
0.05

0.05

0.9

with

and

to

to

with

P(Lucas, is, going, to |x)
= 0.4 ⋅ 0.5 ⋅ 0.6 = 0.12

Greedy Search

Visualizing the Greedy Seach Problem

14

Lucas
is

was

will

visiting

going

traveling

0.4

0.1

0.4

0.5

0.28

0.32

and
0.2

0.6

0.2
0.05

0.05

0.9

with

and

to

to

with

P(Lucas, is, going, to |x)
= 0.4 ⋅ 0.5 ⋅ 0.6 = 0.12

P(Lucas, is, traveling, to |x)
= 0.4 ⋅ 0.4 ⋅ 0.9 = 0.144

Greedy Search

Optimal Solution

Beam Search Decoding

15

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

Beam Search Decoding

16

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

december

in

lucas

1. Get the top most likely words
to form a beam

b

10k

Beam Search Decoding

17

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

a
aaron
…
december
…
is
…
traveling
…
will
…
zulu

december

in

lucas

1. Get the top most likely words
to form a beam

b 2. For each solution in the beam,
evaluate all combinations of sentences

Evaluate solutions at each iterationb * 10k

10k

Beam Search Decoding

18

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

a
aaron
…
december
…
is
…
traveling
…
will
…
zulu

december

in

lucas

1. Get the top most likely words
to form a beam

b 2. For each solution in the beam,
evaluate all combinations of sentences

Evaluate solutions at each iterationb * 10k

10k

3. Get the top most likely sequencesb

Beam Search Decoding

19

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

a
aaron
…
december
…
is
…
traveling
…
will
…
zulu

december

in

lucas

1. Get the top most likely words
to form a beam

b 2. For each solution in the beam,
evaluate all combinations of sentences

Evaluate solutions at each iterationb * 10k

10k

3. Get the top most likely sequencesb

Beam Search Decoding

20

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

a
aaron
…
december
…
is
…
traveling
…
will
…
zulu

december

in

lucas

1. Get the top most likely words
to form a beam

b 2. For each solution in the beam,
evaluate all combinations of sentences

Evaluate solutions at each iterationb * 10k

10k

3. Get the top most likely sequencesb

Beam Search Decoding

21

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

a
aaron
…
december
…
is
…
traveling
…
will
…
zulu

december

in

lucas

1. Get the top most likely words
to form a beam

b 2. For each solution in the beam,
evaluate all combinations of sentences

3. Get the top most likely sequencesb

in december

lucas is

lucas will

Repeat steps 2. and 3.

a

zulu

a

zulu

a

zulu

lucas

going
traveling

Evaluate solutions at each iterationb * 10k

10k

Beam Search Decoding

22

Beam search is a local search algorithm that improves upon Greedy Seach by simulating
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

a
aaron
…
december
…
is
…
traveling
…
will
…
zulu

december

in

lucas

1. Get the top most likely words
to form a beam

b 2. For each solution in the beam,
evaluate all combinations of sentences

3. Get the top most likely sequencesb

in december

lucas is

lucas will

Repeat steps 2. and 3.

a

zulu

a

zulu

a

zulu

lucas

going
traveling

Evaluate solutions at each iterationb * 10k

10k

Decoding Long Sequences

23

"Lucas is traveling to Rio in December to attend a conference about music and artificial intelligence that will be
hosted at the Federal University of Rio de Janeiro. He will go with one of his students.”
x =

x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Encoder RNN
x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

̂y<1> ̂y<2> ̂y<Tx>

Decoder RNN

Regardeless of the decoding strategy, it is difficult for these seq2seq models to translate long
sequence because they have to compress the entire input sequence in hidden state :h<Tx>

0.1
−0.5
−0.3

h<Tx>

 “Lucas irá viajar ao Rio em dezembro para participar de uma conferência sobre música e inteligência artificial
que será realizada na Universidade Federal do Rio de Janeiro. Ele irá com um de seus alunos.”
y =

[
0
0
0]

h<0> ‣ To decode the correct pronoum (Ele), the
Encoder has to carry the information about the
subject (Lucas) from the beginning of the input.

‣ This is hard because the encoder updates
sequentially

h
bottleneck

Attention: Intuition

24

"Lucas is traveling in December.”x =

The idea behind attention is to allow the decoder to look at each input word at every decoding
step , instead of memorizing the whole input sequence into a single hidden state t h<Tx>

<SOS> →

"Lucas is traveling in December.”x =

With attentionWithout attention

h<5>Encoder

Lucas → irá …→̂y = <SOS> → Lucas → irá …→̂y =

(Memorize the whole sequence before decoding)

Decoder Decoder

(Look at each input word at every decoding step)t

̂y<2>̂y<1>̂y<2>̂y<1>

α
<

1,
3>

h<
3>

α
<1

,2
> h

<2
>

α<
1,

4>
h<

4>

α<1
,5>

h<5
>

α
<1

,1>
h

<1
>

 are weights representing how much “attention" the
decoder should give to word when decoding the word
α<t,t′ >

x<t′ > ̂y<t>

Encoder

Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate

The Context Vector

25

The weighted hidden states are summed to form a context vector for each decoding step .

‣ The context vector emphasizes the words that are more important for a particular decoding step

c<t> t

"Lucas is traveling in December.”x =

<SOS> Lucas irá̂y =Decoder

̂y<2>̂y<1>

α
<

1,
3>

h<
3>

α
<1

,2
> h

<2
>

α<
1,

4>
h<

4>

α<1
,5>

h<5
>

α<1,1>h<1>

c<1> c<2>

Dezembro

c<Ty>

̂y<Ty>

Encoder

c<1> =
Tx

∑
t′ =1

α<1,t′ >h<t′ >

The key challenge of implementing attention
is how to compute the weights !α<t,t′ >

α
<1

,1>
h

<1
>

α<1,2>h<1>

α<1,3>h<3>

α<1,4>h<4>

α<1,5>h<5>

= 0.79 ⋅ [
−0.5

0
1]

= 0.10 ⋅
0.3
0.1

−0.5

= 0.05 ⋅
−0.3
0.4
0.9

= 0.05 ⋅ [
0.2

−0.1
0.2]

= 0.01 ⋅ [
0

−0.7
1]

 some up to α<t,t′ > 1

=
−0.37
0.018
0.805

+

+

+

+
Note how is
similar since the
model is giving more
attention to

c<1>

h<1>

h<1>

c<1>

26

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Attention

s<0>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

27

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

FC FC FC FC FC

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

Attention

s<0>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(alignment function)

28

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>
α<1,t′ > =

exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)

Attention

s<0>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

29

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

s<0>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)

30

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)

31

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

concat

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)

32

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

Lucas

̂y<1>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)

33

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

Lucas

̂y<1>

Decoder [D]

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

Lucas

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)

34

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α̂<2,1> α̂<2,2> α̂<2,3> α̂<2,4> α̂<2,5>

α<2,1> α<2,2> α<2,3> α<2,4> α<2,5>

Attention
× × × × ×

+

c<2>c<2> =
5

∑
t′ =1

α<2,t′ >h<t′ >

s<0>

Lucas

̂y<1>

Decoder [D]

Lucas

Use states to produce
 so the model can have

different context per
decoding step.

s<t−1>

α<t,t′ >

α<2,t′ > =
exp(W ⋅ α̂<2,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<2,t′ >)

α̂<2,t′ > = tanh(W1h<t′ > + W2s<1>)

(normalization function)

(alignment function)

35

h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α<2,1> α<2,2> α<2,3> α<2,4> α<2,5>

Attention
× × × × ×

+

c<2>c<2> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

Lucas

̂y<1>

Decoder [D]

Lucas

s<2>

irá
̂y<2>

α̂<2,1> α̂<2,2> α̂<2,3> α̂<2,4> α̂<2,5>

α<2,t′ > =
exp(W ⋅ α̂<2,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<2,t′ >)

α̂<2,t′ > = tanh(W1h<t′ > + W2s<1>)

(normalization function)

(alignment function)

Visualizing Attention

36

Visualizing the attention weights helps analyzing how the model is attending to different words
as it decodes the translation.

α<t,t′ >

Implementing Attention in PyTorch

37

class BahdanauAttention(nn.Module):
 def __init__(self, hidden_dim):
 super().__init__()
 self.W1 = nn.Linear(hidden_dim, hidden_dim, bias=False) # For encoder outputs (h_j)
 self.W2 = nn.Linear(hidden_dim, hidden_dim, bias=False) # For decoder state (s_i)
 self.v = nn.Linear(hidden_dim, 1, bias=False) # For scoring

 nn.init.xavier_uniform_(self.W1.weight)
 nn.init.xavier_uniform_(self.W2.weight)
 nn.init.xavier_uniform_(self.v.weight)

 def forward(self, hidden, encoder_outputs, mask):
 # hidden (s_i): [batch_size, hidden_dim]
 # encoder_outputs (h_j): [batch_size, src_len, hidden_dim]

 # Energy calculation: e_ij = v^T tanh(W₁h_j + W₂s_i)
 e = self.v(torch.tanh(self.W1(encoder_outputs) + self.W2(hidden).unsqueeze(1))).squeeze(-1)

 # Apply mask and get attention weights: a_ij = softmax(e_ij)
 a = F.softmax(e.masked_fill(mask == 0, -1e10), dim=1)

 return a

Next Lecture

L17: Transformers

Solving sequential problems using only attention (without recurrence).

38

