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Logistics

Last Lecture 

‣ Problems of one-hot encoding 

‣ Word Embeddings  

‣ Word2Vec 

‣ GloVe
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Lecture Outline

‣ Machine Translation 

‣ Decoding 

‣ Greedy Search 

‣ Beam Search 

‣ Attention in RNNs 

‣ Visualizing Attention
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Machine Translation
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Portuguese English

Olá, como vai você? Hello, how are you?

O livro está em cima da mesa. The book is on the table.

Lucas irá viajar ao Rio em Dezembro. Lucas is travelling to Rio in December.

Em Dezembro, Lucas irá viajar ao Rio. Lucas is travelling to Rio in December.

…. ….

Given a dataset of sentence pairs: 

( , ),  

we want to learn a model that maps  into .

x = {x<1>, x<2>, …, x<Tx>} y = {y<1>, y<2>, …, y<Ty>}
x y



Seq2Seq Models
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h<1>
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x<2>

h<2>
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x<3>

h<3>
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x<Tx>

h<Tx>
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h<1> h<2> h<3> h<Ty>

 
Lucas

̂y<1>  
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̂y<2>  

traveling
̂y<3>  
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̂y<Ty>

Encoder [E] Decoder [D]
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is
̂y<2>  

December
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We can approach this problem using a Seq2Seq model, where the encoder process the 
input sentence  and the decoder generates the translated sentence x y

 is a vector representation of the entire input sentence h<Tx> x



Decoding
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Decoding is the problem of finding the most likely translation. Formally, find the sequence 
 that maximizes the conditional probability  . {y<1>, . . . , y<Ty>} P(y<1>, . . . , y<Ty> |x)

Lucas irá viajar ao Rio em Dezembrox =

‣ Lucas is traveling to Rio in December 

‣ Lucas is going to be traveling Rio in December 

‣ In December, Lucas will travel to Rio 

‣ Lucas is going to a conference in Rio

y =

y =

y =

y =

Decoding algorithms: 

‣ Greedy Search 

‣ Beam Seach

argmax P(y<1>, . . . , y<Ty> |x)
{y<1>, . . . , y<Ty>}

Objective function:



x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding
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Lucas irá viajar ao Rio em Dezembro

Encoder RNN
[

0
0
0]

h<0>

0.1
−0.5
−0.3

h<Tx>

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of 
selecing the most likely word at each decoding step:



x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding
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Lucas irá viajar ao Rio em Dezembro

Encoder RNN
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Greedy search is the simplest algorithm for decoding seq2seq models. It consists of 
selecing the most likely word at each decoding step:

Lucas



x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding
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Greedy search is the simplest algorithm for decoding seq2seq models. It consists of 
selecing the most likely word at each decoding step:

Lucas
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x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding

10
Lucas irá viajar ao Rio em Dezembro

Encoder RNN

0.3
−0.1
0.9

0.5
−0.5
0.2

0.9
−0.6
−0.1

0.1
0.2
0.1
0.3
0.1

0.0
0.9
0.0
0.1
0.0

0.1
0.0
0.1
0.7
0.1

<SOS> Lucas is

Lucas is going

[
0
0
0]

h<0>

0.1
−0.5
−0.3

h<Tx>

Greedy search is the simplest algorithm for decoding seq2seq models. It consists of 
selecing the most likely word at each decoding step:

Lucas
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going



x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Greedy Search Decoding
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Greedy search is the simplest algorithm for decoding seq2seq models. It consists of 
selecing the most likely word at each decoding step:

Lucas

is

going
<EOS>

Since “Lucas is going" is more likely than “ Lucas is 
travelling” in the English language, Greedy Seach 
will likely produce a worse translation :   

‣ Lucas is going to be traveling Rio in December 

‣ Lucas is traveling to Rio in December

̂y
̂y =

y =



Visualizing the Greedy Seach Problem
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Visualizing the Greedy Seach Problem
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P(Lucas, is, going, to |x)
= 0.4 ⋅ 0.5 ⋅ 0.6 = 0.12

Greedy Search



Visualizing the Greedy Seach Problem
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Lucas
is

was

will

visiting
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0.6

0.2
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with

and

to

to

with

P(Lucas, is, going, to |x)
= 0.4 ⋅ 0.5 ⋅ 0.6 = 0.12

P(Lucas, is, traveling, to |x)
= 0.4 ⋅ 0.4 ⋅ 0.9 = 0.144

Greedy Search

Optimal Solution



Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:

b



Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:

b
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…
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traveling
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zulu

december

in
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1. Get the top  most likely words 
to form a beam

b

10k



Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:

b

a
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…
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…

traveling
…
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a
aaron
…
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…
is
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traveling
…
will
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in

lucas

1. Get the top  most likely words 
to form a beam

b 2. For each solution in the beam, 
evaluate all combinations of sentences

Evaluate  solutions at each iterationb * 10k

10k



Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:
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3. Get the top  most likely sequencesb



Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:
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Evaluate  solutions at each iterationb * 10k

10k
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Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:
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Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:

b

a
aaron

…
december

…
in
…

lucas
…

traveling
…

zulu

a
aaron
…
december
…
is
…
traveling
…
will
…
zulu

december

in

lucas
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10k



Beam Search Decoding
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Beam search is a local search algorithm that improves upon Greedy Seach by simulating  
solutions at each decoding step:

b
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Decoding Long Sequences
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"Lucas is traveling to Rio in December to attend a conference about music and artificial intelligence  that will be 
hosted at the Federal University of Rio de Janeiro. He will go with one of his students.”
x =

x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

Encoder RNN
x<1> x<2> x<Tx>

h<1> h<2> h<Tx>

̂y<1> ̂y<2> ̂y<Tx>

Decoder RNN

Regardeless of the decoding strategy, it is difficult for these seq2seq models to translate long 
sequence because they have to compress the entire input sequence in hidden state :h<Tx>

0.1
−0.5
−0.3

h<Tx>

 “Lucas irá viajar ao Rio em dezembro para participar de uma conferência sobre música e inteligência artificial 
que será realizada na Universidade Federal do Rio de Janeiro. Ele irá com um de seus alunos.”
y =

[
0
0
0]

h<0> ‣ To decode the correct pronoum (Ele), the 
Encoder has to carry the information about the 
subject (Lucas) from the beginning of the input.  

‣ This is hard because the encoder updates  
sequentially

h
bottleneck



Attention: Intuition
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"Lucas is traveling in December.”x =

The idea behind attention is to allow the decoder to look at each input word at every decoding 
step , instead of memorizing the whole input sequence into a single hidden state t h<Tx>

<SOS> →

"Lucas is traveling in December.”x =

With attentionWithout attention

h<5>Encoder

Lucas → irá  …→̂y = <SOS> → Lucas → irá  …→̂y =

(Memorize the whole sequence before decoding)

Decoder Decoder

(Look at each input word at every decoding step )t

̂y<2>̂y<1>̂y<2>̂y<1>

α
<

1,
3>

h<
3>

α
<1

,2
> h

<2
>

α<
1,

4>
h<

4>

α<1
,5>

h<5
>

α
<1

,1>
h

<1
>

 are weights representing how much “attention" the 
decoder should give to word  when decoding the word 
α<t,t′ >

x<t′ > ̂y<t>

Encoder

Bahdanau et. al., 2014. Neural machine translation by jointly learning to align and translate 



The Context Vector
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The weighted hidden states are summed to form a context vector  for each decoding step  .  

‣ The context vector emphasizes the words that are more important for a particular decoding step

c<t> t

"Lucas is traveling in December.”x =

<SOS> Lucas irá̂y =Decoder

̂y<2>̂y<1>

α
<

1,
3>

h<
3>

α
<1

,2
> h

<2
>

α<
1,

4>
h<

4>

α<1
,5>

h<5
>

α<1,1>h<1>

c<1> c<2>

Dezembro

c<Ty>

̂y<Ty>

Encoder

c<1> =
Tx

∑
t′ =1

α<1,t′ >h<t′ >

The key challenge of implementing attention 
is how to compute the weights !α<t,t′ >

α
<1

,1>
h

<1
>

α<1,2>h<1>

α<1,3>h<3>

α<1,4>h<4>

α<1,5>h<5>

= 0.79 ⋅ [
−0.5

0
1 ]

= 0.10 ⋅
0.3
0.1

−0.5

= 0.05 ⋅
−0.3
0.4
0.9

= 0.05 ⋅ [
0.2

−0.1
0.2 ]

= 0.01 ⋅ [
0

−0.7
1 ]

 some up to α<t,t′ > 1

=
−0.37
0.018
0.805

+

+

+

+
Note how  is 
similar  since the 
model is giving more 
attention to 

c<1>

h<1>

h<1>

c<1>
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Attention

s<0>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

FC FC FC FC FC

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

Attention

s<0>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(alignment function)
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>
α<1,t′ > =

exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)

Attention

s<0>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

s<0>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)
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h<3>
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h<5>
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h<4> s<1>

<SOS>
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FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

concat

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

 
Lucas

̂y<1>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α<1,1> α<1,2> α<1,3> α<1,4> α<1,5>

Attention
× × × × ×

+

c<1>c<1> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

 
Lucas

̂y<1>

Decoder [D]

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

Lucas

α̂<1,1> α̂<1,2> α̂<1,3> α̂<1,4> α̂<1,5>

α̂<1,t′ > = tanh(W1h<t′ > + W2s<0>)

(normalization function)

(alignment function)

α<1,t′ > =
exp(W ⋅ α̂<1,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<1,t′ >)
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α̂<2,1> α̂<2,2> α̂<2,3> α̂<2,4> α̂<2,5>

α<2,1> α<2,2> α<2,3> α<2,4> α<2,5>

Attention
× × × × ×

+

c<2>c<2> =
5

∑
t′ =1

α<2,t′ >h<t′ >

s<0>

 
Lucas

̂y<1>

Decoder [D]

Lucas

Use states  to produce 
 so the model can have 

different context per 
decoding step.

s<t−1>

α<t,t′ >

α<2,t′ > =
exp(W ⋅ α̂<2,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<2,t′ >)

α̂<2,t′ > = tanh(W1h<t′ > + W2s<1>)

(normalization function)

(alignment function)
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h<0>

Lucas

h<1>

irá

h<2>

viajar

h<3>

Dezembro

h<5>

Encoder [E]

em

h<4> s<1>

<SOS>

Softmax

FC FC FC FC FC

α<2,1> α<2,2> α<2,3> α<2,4> α<2,5>

Attention
× × × × ×

+

c<2>c<2> =
5

∑
t′ =1

α<1,t′ >h<t′ >

s<0>

 
Lucas

̂y<1>

Decoder [D]

Lucas

s<2>

 
irá
̂y<2>

α̂<2,1> α̂<2,2> α̂<2,3> α̂<2,4> α̂<2,5>

α<2,t′ > =
exp(W ⋅ α̂<2,t′ >)

∑5
t′ =1 exp(W ⋅ α̂<2,t′ >)

α̂<2,t′ > = tanh(W1h<t′ > + W2s<1>)

(normalization function)

(alignment function)



Visualizing Attention
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Visualizing the attention weights  helps analyzing how the model is attending to different words 
as it decodes the translation.

α<t,t′ >



Implementing Attention in PyTorch
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class BahdanauAttention(nn.Module): 
    def __init__(self, hidden_dim): 
        super().__init__() 
        self.W1 = nn.Linear(hidden_dim, hidden_dim, bias=False)   # For encoder outputs (h_j) 
        self.W2 = nn.Linear(hidden_dim, hidden_dim, bias=False)  # For decoder state (s_i) 
        self.v = nn.Linear(hidden_dim, 1, bias=False)  # For scoring 
         
        nn.init.xavier_uniform_(self.W1.weight) 
        nn.init.xavier_uniform_(self.W2.weight) 
        nn.init.xavier_uniform_(self.v.weight) 
         
    def forward(self, hidden, encoder_outputs, mask): 
        # hidden (s_i): [batch_size, hidden_dim] 
        # encoder_outputs (h_j): [batch_size, src_len, hidden_dim] 
         
        # Energy calculation: e_ij = v^T tanh(W₁h_j + W₂s_i) 
        e = self.v(torch.tanh(self.W1(encoder_outputs) + self.W2(hidden).unsqueeze(1))).squeeze(-1) 
         
        # Apply mask and get attention weights: a_ij = softmax(e_ij) 
        a = F.softmax(e.masked_fill(mask == 0, -1e10), dim=1) 
         
        return a



Next Lecture

L17: Transformers 

Solving sequential problems using only attention (without recurrence).  
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