

Deep Learning

L15: Word Embeddings

Logistics

Announcements

PA4 is out and due on Wednesday (13/11), 11:59pm

Last Lecture

- Language Models
- Implementing RNNs
- Vanishing/Exploding Gradients
- LSTM and GRUs

Lecture Outline

- Problems with one-hot encoding
- Word Embeddings
 - Featurized Representation
 - Visualization
 - Properties
 - Applications
- Word2Vec and Negative Sampling
- GloVe

Problem with one-hot encoding

A problem of **one-hot encoding** is that it represents each word as an independent category

Vocabulary V = [a, aaron, ..., zebra, zulu], |V| = 10,000

IFV

It doesn't let a model easily generalize across words!

► For example, consider a language model that gives high probability to the sentence:

"I want a glass of **orange** juice"

Now, consider sampling from this model with context:

"I want a glass of **apple** ______"

To the model, the relationship between **apple** and orange is the same as apple and man, or queen.

This is because the distance between any two words is the same!

Word Embedding: Featurized Representation

Ideally, we would like to have featurized representation for words, where words with similar meaning to have a similar representation:

apple and orange are close in the embedding space

	Man (5391)	Woman (9853)	King (4914)	Queen (7157)	Apple (456)	(
Gender	-1	1	-0.95	0.97	0.00	
Royal	0.01	0.02	0.93	0.95	-0.01	
Age	0.03	0.02	0.7	0.69	0.03	
Food	0.04	0.01	0.02	0.01	0.95	
•••						

 \mathbf{e}_{5391} \mathbf{e}_{9853} \mathbf{e}_{4914} \mathbf{e}_{7157} \mathbf{e}_{456} \mathbf{e}_{6257}

V	
Orange	
(6257)	

0.01

0.00

-0.02

0.97

Word embeddings are learned featurized representations:

- We can define the number of features d to be learned (e.g., 300), but **not** what they represent (e.g., gender)
- Words with similar meaning to have a similar representation:
- They allow a model to generalize across words more easily:

"I want a glass of **orange** juice"

"I want a glass of **apple** juice "

Visualizing Word Embeddings (with t-SNE)

We can visualize high dimentinoal word embeddings (e.g., 300 features) in 2D using the t-SNE algorithm:

UFV

van der Maaten and Hinton., 2008. Visualizing data using t-SNE

- t-SNE learns a non-linear mapping between the original representation and a 2D space
- Word embeddings tend to group words with similar meaning together in the embedding space.

Properties of word embeddings

One interesting property of word embeddings is that they allow word analogies to be solved with vector arithmetic.

	Man (5391)	Woman (9853)	King (4914)		Apple (456)	O I ({
Gender	-1	1	-0.95	0.97	0.00	
Royal	0.01	0.02	0.93	0.95	-0.01	
Age	0.03	0.02	0.7	0.69	0.03	_
Food	0.04	0.01	0.02	0.01	0.95	
•••						
	e _{man}	e _{woman}	e _{king}	e _{queen}	e _{apple}	e

Mikolov et. al., 2013, Linguistic regularities in continuous space word representations

Similarity Between Vectors

Measuring similarity between vectors is very important in deep learning and one of the most populars functions to do that is the **cosine similarity**:

The **cosine similarity** between two vectors *u* and *v* is defined as:

This formula is equal to the cossine of the anble between u and v:

$$\mathbf{u} \qquad sim(\mathbf{u}, \mathbf{v}) = cos(\phi)$$

 $sim(\mathbf{u}, \mathbf{v}) = \frac{\mathbf{u} \cdot \mathbf{v}}{||\mathbf{u}||_2 ||\mathbf{v}||_2}$

Embedding Matrix

called **embeddings matrix** E_i , to the model:

Vocabulary v = [a, aaron, ..., zebra, zulu], |V| = 10,000

Word embeddings with dimentionality d (e.g. 300) are learned by adding an extra weight matrix,

Learning Word Embeddings

There are many ways to learn word embeddings, but a simple and popular one is to train a **language model** with an **embedding layer** before the model:

UFV

Bengio et. al., 2003, A neural probabilistic language model

Learning Word Embeddings

If your goal is not to learn a language model, but just the embeddings, you don't need to use the previous words as **context**. Here are other ideas that work well:

Context

Last words: (Language Model)	I	want	a ⊢——	glass	of	orange	juice	to	drink	with	my	cereal
Surrounding words: (CBOW)	I	want	a I	glass	of	orange	juice	to	drink	with	my	cereal
A nearby word: (Skip-gram)	I	want	а	glass	of	orange	juice	to	drink	with	my	cereal

Target

11

Word2Vec

Word2Vec is a model to learn word embeddings based on **CBOW** or **Skip-gram** contexts, where we produce examples by (1) randomly sampling a word and (2) selecting a neighboring context (e.g, ± 3)

CBOW: The goal is to predict the **target** word from the **surrounding context**!

Mikolov et. al., 2013. Efficient estimation of word representations in vector space.

Skip-gram: The goal is to predict the **target word** from the **context word**!

I want a glass of orange juice to drink with my cereal

C	ontext	Target
	juice	glass
	juice	of
	juice	orange
	juice	to
	juice	drink
	juice	with

Word2Vec: CBOW

In **CBOW** model, the goal is to predict the target word from the surrounding context.

Word2Vec: Skip-Gram

In the **Skip-gram** model, the goal is to predict the target word from each context word!

l want	a glass	of	ora
Context	Target		
juice	glass		
juice	of		
juice	orange		
juice	to		
juice	drink		
juice	with		

UFV

Negative Sampling

Since the vocabulary size is typically large (e.g., 10,000), computing a probability with the softmax layer is expensive!

Negative sampling changes the classification text to a binary classification problem by generating a dataset with positive and negative examples:

Context	Word	Target?	
orange	juice	1	Sample wit
orange	king	0	
orange	book	0	 Sample k random v
orange	the	0	from the
orange	of	0	dictionar

Mikolov et. al., 2013. Distributed representation of words and phrases and their compositionality

$$P(t \mid c) = \frac{e^{\mathbf{w}_t \cdot \mathbf{e}_c + b_t}}{\sum_{j=1}^{10,000} \mathbf{e}^{\mathbf{w}_t \cdot e_c + b_t}}$$

(we have to sum 10,000 terms)

GloVe (Global Vectors for Word Representation)

In Word2Vec, the global information is not preserved. To address that, GloVe predicts the number of times a target word t appears in the context of the context word c

1. Build a word co-occurence matrix X

2. Assign a weight vector per context \mathbf{W}_i and target word $\tilde{\mathbf{W}}_{i}$

3. Predict log co-occurance from \mathbf{W}_i and $\tilde{\mathbf{W}}_i$ using weighted MSE

Prediction Target

$$L = \sum_{i=1}^{10,000} \sum_{j=1}^{10,000} f(X_{ij}) (\mathbf{w}_i \tilde{\mathbf{w}}_j + b_i + b_j - \log(X_{ij}))^2 \text{ Using}$$
weighting function that helps balance

		${\bf \tilde{w}_1}$	\tilde{w}_2	\tilde{w}_3	$ ilde{\mathbf{W}}_{2}$	i Ŵ	5 Ŵ	6	$\tilde{\mathbf{W}}_{7}$
		١	Mau	r 8	glas	s of	ora	nge jui	,ce
\mathbf{w}_1		0	1.0	0.5	0	0	()	0	$\rightarrow \mathbf{V} = \mathbf{\nabla}^{C}$
W ₂	want	1.0	0	1.0	0.5	0	0	0	$X_{ij} = \sum_{i}^{C} \frac{1}{dist}$
w ₃	а	0.5	1.0	0	1.0	0.5	0	0	where $oldsymbol{C}$ is cor
w ₄	glass	0	0.5	1.0	0	1.0	0.5	0	window size (e
W ₅	of	0	0	0.5	1.0	0	1.0	0.5	
w ₆	orange	0	0	0	0.5	1.0	0	1.0	
W ₇	juice	0	0	0	0	0.5	1.0	0	

ng log helps compress the range of values

the importance of different co-occurrences

Pennington et. al., 2014. GloVe: Global vectors for word representation

4. Embedding:

 $W_i + \tilde{W}_i$

Using Word Embeddings

When working with Natural Language Processing problems, you can learn word embeddings by just adding an embedding layer to your network:

UFV

7

17

Using Word Embeddings

```
class RNNSentiment(nn.Module):
        super().___init___()
        # Embedding layer
        self.embedding = nn.Embedding(
        # RNN layer
            batch_first=True
        # Output layer
        self.fc = nn.Linear(hidden_dim, output_dim)
```


Sentiment Analysis

"It's a terrible product." +

In PyTorch, you can use the Embedding layer to add an Embedding Matrix E to your model:

def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, padding_idx=None):

num_embeddings=vocab_size, embedding_dim=embedding_dim, padding_idx=padding_idx

self.rnn = nn.RNN(input_size=embedding_dim, hidden_size=hidden_dim, num_layers=1,

Next Lecture

L15: Attention Mechanisms

Machine Translation, Decoding Strategies, Attention Mechanisms in RNNs

