L15: Word Embeddings

Deep Learning

1

Logistics

Announcements

‣ PA4 is out and due on Wednesday (13/11), 11:59pm

Last Lecture

- ‣ Language Models
- ‣ Implementing RNNs
- ‣ Vanishing/Exploding Gradients
- ‣ LSTM and GRUs

Lecture Outline

- ‣ Problems with one-hot encoding
- ‣ Word Embeddings
	- ‣ Featurized Representation
	- ‣ Visualization
	- ‣ Properties
	- ‣ Applications
- ‣ Word2Vec and Negative Sampling
- ‣ GloVe

Problem with one-hot encoding

 $V = [a, aaron, ..., zebra, zulu], \quad |V| = 10,000$

UFV

A problem of **one-hot encoding** is that it represents each word as an independent category

It doesn't let a model easily generalize across words!

‣ For example, consider a language model that gives high probability to the sentence:

"I want a glass of orange juice"

Now, consider sampling from this model with context:

"I want a glass of apple "

To the model, the relationship between **apple** and **orange** is the same as **apple** and **man**, or queen.

This is because the distance between any two words is the same!

Word Embedding: Featurized Representation

e₅₃₉₁ **e**₉₈₅₃ **e**₄₉₁₄ **e**₇₁₅₇ **e**₄₅₆ **e**₆₂₅₇

… *"I want a glass of orange juice"*

- \blacktriangleright We can define the number of features d to be learned (e.g., 300), but **not** what they represent (e.g., gender)
- ‣ Words with similar meaning to have a similar representation:
- ‣ They allow a model to generalize across words more easily:

Word embeddings are learned featurized representations:

> *"I want a glass of apple " juice*

Ideally, we would like to have featurized representation for words, where words with similar meaning to have a similar representation:

apple and orange are close in the embedding space

Visualizing Word Embeddings (with t-SNE)

van der Maaten and Hinton., 2008. Visualizing data using t-SNE 6

We can visualize high dimentinoal word embeddings (e.g., 300 features) in 2D using the t-SNE algorithm:

UFV

Properties of word embeddings

Mikolov et. al., 2013, Linguistic regularities in continuous space word representations

One interesting property of word embeddings is that they allow **word analogies** to be solved with vector arithmetic.

Similarity Between Vectors

u ⋅ **v** $\left| \left| \mathbf{u} \right| \right|_2 \left| \left| \mathbf{v} \right| \right|_2$

Measuring similarity between vectors is very important in deep learning and one of the most populars functions to do that is the **cosine similarity**:

The **cosine similarity** between two vectors *u* and *v* is defined as:

 $sim(\mathbf{u}, \mathbf{v}) =$

This formula is equal to the cossine of the anble between *u* and *v*:

$$
\frac{u}{\sqrt{1-\frac{v}{v}}}
$$
 $\frac{v}{\sqrt{1-\frac{v}{v}}}$

Embedding Matrix

Word embeddings with dimentionality d (e.g. 300) are learned by adding an extra weight matrix , called $\mathbf{embeddings}\,\mathbf{matrix}\,E$, to the model:

Vocabulary $v = [a, aaron, ..., zebra, zulu],$ $|V| = 10,000$

Learning Word Embeddings

There are many ways to learn word embeddings, but a simple and popular one is to train a **language model** with an **embedding layer** before the model:

Bengio et. al., 2003, A neural probabilistic language model

Learning Word Embeddings

11

If your goal is not to learn a language model, but just the embeddings, you don't need to use the previous words as **context**. Here are other ideas that work well:

Context

Target

Word2Vec

12 Mikolov et. al., 2013. Efficient estimation of word representations in vector space.

Word2Vec is a model to learn word embeddings based on **CBOW** or **Skip-gram** contexts, where we produce examples by (1) randomly sampling a word and (2) selecting a neighboring context (e.g, ± 3)

I want a glass of orange juice to drink with my cereal

Skip-gram: The goal is to predict the **target word** from the **context word**!

CBOW: The goal is to predict the **target word** from the **surrounding context**!

Word2Vec: CBOW

In **CBOW** model, the goal is to predict the **target word** from the **surrounding context.**

Word2Vec: Skip-Gram

In the **Skip-gram** model, the goal is to predict the **target word** from each **context word**!

UFV

Negative Sampling

Since the vocabulary size is typically large (e.g., 10,000), computing a probability with the softmax layer is expensive!

Negative sampling changes the classification text to a binary classification problem by generating a dataset with positive and negative examples:

Mikolov et. al., 2013. Distributed representation of words and phrases and their compositionality

(we have to sum 10,000 terms)

$$
P(t \mid c) = \frac{e^{\mathbf{w}_t \cdot \mathbf{e}_c + b_t}}{\sum_{j=1}^{10,000} \mathbf{e}^{\mathbf{w}_t \cdot e_c + b_t}}
$$

GloVe (Global Vectors for Word Representation)

In Word2Vec, the global information is not preserved. To address that, GloVe predicts the number of times a target word *t* appears in the context of the context word *c*

3. Predict log co-occurance from \mathbf{w}_i and $\tilde{\mathbf{w}}_j$ using weighted MSE

JFV

 $L =$ 10,000 10,000 ∑ *i*=1 ∑ *j*=1 *f*(*X_{ij}*) ($w_i \tilde{w}_j + b_i + b_j - log(X_{ij}))^2$ Prediction Target

Pennington et. al., 2014. GloVe: Global vectors for word representation 2008. The magnetic method of \sim 16

1. Build a word co-occurence matrix *X*

 $e_i =$ $w_i + \tilde{w}_i$ 2

 target word $\widetilde{\mathbf{w}}_j$

weighting function that helps balance the importance of different co-occurrences

Using log helps compress the range of values

4. Embedding:

Using Word Embeddings

17

When working with Natural Language Processing problems, you can learn word embeddings by just adding an embedding layer to your network:

UFV

Using Word Embeddings


```
class RNNSentiment(nn.Module): 
         super() . _ init ( ) # Embedding layer
        self.embedding = nn.Embedding(
) and the state \mathcal{L} # RNN layer
              batch_first=True
 ) 
         # Output layer
         self. fc = nn.Linear(hidden_dim, output_dim)
```


Sentiment

In PyTorch, you can use the Embedding layer to add an Embedding Matrix E to your model:

def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, padding_idx=None):

num_embeddings=vocab_size, embedding_dim=embedding_dim, padding_idx=padding_idx

self.rnn = nn.RNN(input_size=embedding_dim, hidden_size=hidden_dim, num_layers=1,

Next Lecture

L15: Attention Mechanisms

Machine Translation, Decoding Strategies, Attention Mechanisms in RNNs

