

Deep Learning

L13: Recurrent Neural Networks

1

Logistics

Announcements

► PA3 is due this Wednesday, 11:59pm

Last Lecture

- Input normalization
- Batch normalization
- Layer normalization

Lecture Outline

- Sequential Problems
- Recurrent Neural Networks (RNNs)
- Type of RNNs
- Backpropagation Through Time
- Language Models
- Exploding/Vanishing Gradients

What is the next position of this ball?

Recurrent Neural Networks are used for classification, regression or generation of sequential data!

What letter comes after T in the alphabet?

R S I

Recurrent Neural Networks are used for classification, regression or generation of sequential data!

Sequential Problems in Artificial Intelligence

	Input	Output
Speech Recognition		"Alexa, play The Beatles on Spotify"
Sentiment Analysis	"This is a terrible product."	
Machine Translation	"The book is on the table."	"O livro está em cima da mesa."
Image Captioning		"A cat lying by the window."
Music Generation	None	
Named Entity Recognition	"Lucas Ferreira is a professor at UFV"	" <mark>Lucas Ferreira</mark> is a professor at <mark>UFV</mark> "

Example: Named Entity Recognition

Locate and classify named entities mentioned in unstructured text:

Why not MLPs for sequential problems?

Problem 1: Inputs and outputs may have different sizes in different examples.

IFV

Problem 2: MLPs do not capture temporal dependencies between elements of a sequence.

Recurrent Neural Networks (RNNs)

produce the output y^{<t>}

 $\mathbf{h}^{\langle t \rangle} = g_1(W_h \mathbf{h})$ $\hat{y}^{\langle t \rangle} = g_2(W_y \mathbf{h})$

- \bullet g_1 : hidden layer activation function (tanh/relu)
- g_2 : output layer activation function (sigmoid/softmax)

RNNs process each input element $\mathbf{x}^{<t>}$ at a time, keeping a state (vector) $\mathbf{h}^{<t>}$ that is updated at each time step t to

$$\mathbf{a}^{} + W_{\mathbf{x}}\mathbf{x}^{} + \mathbf{b}_{h})$$
$$\mathbf{a}^{} + \mathbf{b}_{y})$$

Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs)

RNNs can be seen unrolled over a fixed number of timesteps T

UFV

 $h^{<1>} = g_1(W_h h^{<0>} + W_x x^{<1>} + b_h)$ $\hat{y}^{<1>} = g_2(W_v h^{<1>} + b_v)$ $h^{\langle 2 \rangle} = g_1(W_h h^{\langle 1 \rangle} + W_r x^{\langle 2 \rangle} + b_h)$ $\hat{y}^{\langle 2 \rangle} = g_2(W_v h^{\langle 2 \rangle} + b_v)$ $h^{<3>} = g_1(W_h h^{<2>} + W_x x^{<3>} + b_h)$ $\hat{y}^{<3>} = g_2(W_v h^{<3>} + b_v)$ $h^{<T>} = g_1(W_h h^{<T-1>} + W_x x^{<T>} + b_h)$ $\hat{y}^{<T>} = g_2(W_v h^{<T>} + b_v)$

11

Types of RNNs

Many to Many

Many to Many (Seq2Seq)

Example Named Entity Recognition

Example Machine Translation

Example Sentiment Analysis **Example** Image Description

UFV

Many to One

UFV

One to Many

Image Captioning

Use **x** to initialize $h^{<0>}$

UFV

"A cat lying by the window."

The input *x* is processed with an **encoder** network and its final hidden state $h^{< T_x>}$ is used to initialize the hidden state of another **decoder** network, which produces an output for each time step t_v .

Encoder [E]

"O livro está em cima da mesa."

Decoder[D]

Backpropagation Through Time

Process all T elements of the sequence to calculate the loss

UFV

Backpropagate through the entire sequence to calculate the gradient

Truncated Backpropagation Through Time

If the size of the sequence to be processed is very large or infinite (e.g., time series), perform propagation and backpropagation in windows of size j(e.g., 4)

Next Lecture

L14: Recurrent Neural Networks (Part II) GRUs and LSTMs for processing with very long sequences.

