

Deep Learning

L10: Convolutional Neural Networks

1

Logistics

Announcements

- ► FP1: Project Proposal deadline has been extended to Oct. 18
- Please fill out the evaluation form: https://forms.gle/2g3fXBymVtvh2ij3A

Last Lecture

- Mini-batch Gradient Descent
- Gradient Descent with Momentum
- ► RMSProp
- Adam

UFV

Lecture Outline

- Parameter explosion
- Filters (kernels)
- Convolutions
 - Padding
 - Strided Convolutions
- Convolutions Over Volumes
- Padding Layers

UFV

Convolutional Neural Networks

Parameter Explosion

To process images with MLPs, we have to transform them into feature vectors:

• • •

$$n^{[1]} = 1000$$

 $W^{[1]} = (n^{[1]}, n^{[0]}) = (1000, 3M)$

3 billion parameters! 😡

Problems:

- Computational resources (Memory and processing)
- We need lots of data to avoid overfit

 $d = h \times w \times 3$

 X_{c}

 \mathcal{X}_1

 χ_{2}

 $d = 1000 \times 1000 \times 3 = 3M$

4

We can use convolutions to process large images with a constant number of parameters.

Convolutions are operations to apply filters (i.e., transformations) to images:

Blur

(Filter)

A **filter** (or kernel) is a small matrix (typically 3x3) of weights used to transform a **pixel** by the weighted sum of its neighbours.

206	205	247	
144	161	137	
192	154	75	

0,0625	0,125	0,0625		
0,125	0,25	0,125		
0,0625	0,0125	0,0625		
Filter(blur)				

*

Original pixel (161) and its neighbours

$$= \sum_{i=1}^{3} \sum_{j=1}^{3} = m_{i,j} * k_{i,j} =$$

206 * 0.0625 + 205 * 0.125 + 247 * 0.0625 + 144 * 0.125 + 161 * 0.25 + 137 * 0.125 + 192 * 0.0625 + 154 * 0.125 + 75 * 0.0625 =

206	205	247	
144	178	137	
192	154	75	

Transformed pixel (178) and its neighbours

178

In image processing and computer vision, a **convolution** consists of applying a filter to each pixel of an image:

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

 		_
0,0625	0,125	0,0
0,125	0,25	0
0,0625	0,0125	0,0

*

Filter (blur)

Original Image

 (5×5)

In image processing and computer vision, a **convolution** consists of applying a filter to each pixel of an image:

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

0,0625 0,125 0,	 		
	0,0625	0,125	0,1
0,125 0,25 C	0,125	0,25	0
0,0625 0,0125 0,	0,0625	0,0125	0,0

*

Filter (blur)

Original Image

 (5×5)

In image processing and computer vision, a **convolution** consists of applying a filter to each pixel of an image:

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

0,0625	0,125	0,
0,125	0,25	0
0,0625	0,0125	0,

*

Original Image (5×5)

In image processing and computer vision, a **convolution** consists of applying a filter to each pixel of an image:

		استاستا ستاست	المكمكم كمكما	المكام كمكمكما
206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

0,0625	0,125	0,1
0,125	0,25	0
0,0625	0,0125	0,0

*

Original Image (5×5)

In image processing and computer vision, a **convolution** consists of applying a filter to each pixel of an image:

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

0,0625	0,125	0,
0,125	0,25	0
0,0625	0,0125	0,

*

Original Image (5×5)

In image processing and computer vision, a **convolution** consists of applying a filter to each pixel of an image:

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

0,0625	0,125	0,
0,125	0,25	0
0,0625	0,0125	0,0

*

Original Image (5×5)

Edge Detection

UFV

Convolutions can be used to detect edges in images, which is particularly important for feature extraction.

Horizontal

Manually Designing Filters

the reseach community in image processing.

https://setosa.io/ev/image-kernels/

Diferent filters for border detection have been developed scientifically by

0	-1		3	0	-3
0	-2		10	0	-10
0	-1		3	0	-3
Sobel Scharr					-

Sobel

Learning Filters

Convolutional Neural Networks (CNNs) **learn filters** from images with a loss function and gradient descent.

W 1	W2	W3
W4	W 5	W 6
W7	W8	W 9

The weights of a CNN are organized in convoluion filters

*

Convolutions reduce the size of an image

- Consecutive convolutions can make the image very small (e.g., 1x1)
- Corner pixels are less shared among convolution steps than the pixels in the middle

206	205	247	245	244	
244	161	137	244	254	
192	154	75	200	249	*
90	109	96	143	223	
67	69	107	196	236	

Original Image (5×5)

General rule

 $(n \times n)^* (f \times f) = (n - f + 1 \times n - f + 1)$

11

Padding

Padding consists of adding a border with p pixels to the original image:

206	205	247	245	244	
244	161	137	244	254	
192	154	75	200	249	
90	109	96	143	223	
67	69	107	196	236	

Original Image (5 x 5)

*

General Rule with Padding

 $(n \times n)^* (f \times f) = (n + 2p - f + 1 \times n + 2p - f + 1)$

Padding

To find the value of p that keeps the size of an $n \times n$ image after a convolution with a filter of size f (odd), one can solve the following equation:

$$n + 2p - f + 1 = n$$
$$2p - f + 1 = 0$$
$$2p = f - 1$$
$$p = \frac{f - 1}{2}$$

Strided convolutions slide the filter more than one step at a time.

stride = 2

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

Original Image

 (5×5)

UFV

*

Strided convolutions slide the filter more than one step at a time.

stride = 2

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

Original Image

 (5×5)

*

Strided convolutions slide the filter more than one step at a time.

stride = 2

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

*

Original Image (5×5)

Strided convolutions slide the filter more than one step at a time.

stride = 2

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

Original Image (5×5)

UFV

*

Strided convolutions slide the filter more than one step at a time.

stride = 2

206	205	247	245	244
244	161	137	244	254
192	154	75	200	249
90	109	96	143	223
67	69	107	196	236

*

Original Image (5×5)

Strided convolutions slide the filter more than one step at a time.

Original Image (5×5)

 $(n \times n) * (f$

The stride size is the number of steps used to slide

General Rule with Padding and Stride

$$\times f) = \left(\frac{n+2p-f}{s} + 1 \times \frac{n+2p-f}{s} + 1\right)$$

Convolutions in colored images (R,G,B) need filters with 3 channels:

The number of channels in the filter must be the same as in the image!

Convolutions in colored images (R,G,B) need filters with 3 channels:

The number of channels in the filter must be the same as in the image!

Convolutions in colored images (R,G,B) need filters with 3 channels:

Convolutions in colored images (R,G,B) need filters with 3 channels:

The number of channels in the filter must be the same as in the image!

Convolutions in colored images (R,G,B) need filters with 3 channels:

The number of channels in the filter must be the same as in the image!

Convolutions in colored images (R,G,B) need filters with 3 channels:

Multiple Filters

Original Image $(5 \times 5 \times 3)$

Filter 2 $(3 \times 3 \times 3)$

*

*

CNN for Image Classification

$$n^{[0]} = 39 \quad f^{[1]} = 3 \qquad f^{[2]} = 5$$

$$s^{[1]} = 1 \qquad s^{[2]} = 2$$

$$p^{[1]} = 0 \qquad p^{[2]} = 0$$

$$n^{[1]} = 10 \qquad n^{[2]} = 20$$

UFV

- $f^{[3]} = 5$
- $s^{[3]} = 2$
- $p^{[3]} = 0$
- $n^{[3]} = 40$

Notation:

- $f^{[l]}$ size of filters in layer l
- $s^{[l]}$ stride size in layer l
- $p^{[l]}$ padding size in layer l
- $n^{[l]}$ number of filters in layer l

How many parameters does a layer with 10 filters (3x3x3) have?

 $3 \times 3 \times 3 = 27$ +1 = 28 $\times 10$ = 280 Parameters

Next Lecture

L11: CNN Case Studies LeNet-5, AlexNet, VGG, ResNet, Inception

