INF72]

2024/2

U

Deep Learning

L.9: Advanced Optimization Algorithms

Al inthe News

Computer Scientist were awared the Nobel Prize of Physics and Chemistry!

o
N
=
O
o
m
3
(D
=
(D
Q.

Payaui|3 sepjIN :suolelsn]||

David
Baker Hassabis Jumper

“for computational “for protein structure prediction”
protein design”

John J. Hopfield Geoffrey E. Hinton

“for foundational discoveries and inventions
that enable machine learning
with artificial neural networks”

THE ROYAL SWEDISH ACADEMY OF SCIENCES THE ROYAL SWEDISH ACADEMY OF SCIENCES

UF

Logistics

Announcements

» Next class (Monday)we will have our Midterm |!

4

PA2 - Multilayer Perceptron is due today (11:59pm)!

Last Lecture

)

UF

1/

/

Reqgularization

» Vector/Matrix Norms

Jropout

-arly Stopping

Jata Augmentation

UF

ecture Outline

» Mini-batch Gradient Descent

» Gradient Descent with Momentum

» Exponential Moving Average

» Adaptive Moment

» Root Mean Squared Propagation (RMS

- stimation (Adam)

°rop)

Deep Learning in Practice

Building good deep learning models involves a iterative process of training and validation:

Training time is the longest of process among them,
especially in large datasets

Start with an Yes
Initial set of
hyperparameters g None
,| HighBias? High Variance? 0 °
:
Training Set Vallidation Set Report Test

Performance

Reduced training time is a crucial factor in creating successful neural network models:
» Vectorization/GPUs
» Faster Optimization Algorithms

UF

Mini-batch Gradient Descent

Large datasets(e.qg., bM)won't fit entirely in the GPU memory, so to vectorize model training:
1. Divide the training set in subsets of size s(e.g, 32) called mini-batches
2. Update the weights for each mini-batch (X}, Y1), instead of once for the entire dataset X

v | yDy@.... 62

(33)

yo oy

UF

UF

Mini-batch Gradient Descent

n batches = m//s

e in (n_epochs):
t in (n batches):
Yh_t = forward_pass(X_t)

1/s * np.sum(L(Yh_t, Y _t))

db_t = backward_pass(X_t, Y_t)

WIl] - 1r x dwW_t
b[l] - 1r % db t

Update weights for each mini-batch X,
instead of once for the entire dataset X

» Multiple weight updates per epoch
» Batch Gradient Descent: s = m
» Stochastic Gradient Descent: s = 1

» Mini-batch Gradient Descent: 1 > s < m

Learning Curves

Batch Gradient Descent Mini-batch Gradient Descent
0.70 -
0.65 -
0.65 -
0.60 A
0.60 -
” , 0.55 -
3 3
— 0.55 - —
0.50 A
0.50 -
0.45 -
0.45 -
0.40 -
0 2 4 6 8 0 25 50 75 100 125 150 175 200
Epochs Number of mini-batches
» BGD computes the exact gradient using the » MBGD computes aproximate gradients using
entire dataset in each iteration: small subsets of the dataset;
» The curve often shows a steady, monotonic » The curve often show a noisier/more jagged
decrease in |loss. decrease in loss.

UF

Training Time

Batch Gradient Descent
» Asingle weight update per epoch
» EXxact gradient, but slow updates

Stochastic Gradient Descent

» m weight updates per epoch
» Very fast weight updates, but very noisy gradient
» Doesnt use vectorization!

Mini-batch Gradient Descent (most common!)

» One weight update for each mibi-bath X*
» Fastupdate with approximate gradients

UFV

Training Time

Batch Gradient Descent

» 1| weight update per epoch for the entire dataset X
» Slow but precise updates, due to exact gradient

Stochastic Gradient Descent

» mupdates per epoch, one for each example xW

» Veryfast but veryimprecise weight updates, due to very
noisy gradient

» Doesnt use vectorization!

Mini-batch Gradient Descent (most common!)

» Multiple updates per epoch, one for each mini-batch X "
» Fastupdate with approximate gradients

UF\/ 10

Choosing batch size

For small datasets:
» Batch Gradient Descent
For large dataset:
» Mini-batch Gradient Descent
» Mini-batch size (hyperparmater):
» Typically a power of two
» Fitsinyour CPU/GPU memory
» Examples: 52, b4, 128, 256, 512, 1024, ...

UF

11

Gradient Descent with Momentum

UF

12

Moving Average

Moving averages are averaging metrics for time series:

Simple Moving Average (SMA):

|
Vt — ? . Z 6’t
=1
Weighted Moving Average (WMA):

1 T
= ar Z O - W,
Zt=1 Wt =1

v, =Py + (1 =P,
UF

- xponential Moving Average (EMA):

Temperature

Months

13

Exponential Moving Average

v.=pv_,+ (1 —p06, /=09
v = 0.9y, + 0.16,
v, = 0.9v, + 0.16,
v = 0.9v, + 0.16,

1
v, Isapprox. the average of the last samples!

I=p

~ 10 days

B=0.9

~1-09

1
= (.98 = ~ 50 days
b 1 —0.98 4

1
- 1-05

B=0.5

~ 2 days

UF

The higher the f3, the slower the average adapts
to the new samples 6,

91 — 28
92 — 23
0150 = 16

0151 = 24))

Temperatura

Months

14

Exponential Moving Average

The exponential moving average is a weighted sum of exponentially decreasing weights!

vi=pv_+UA =0, =09

VIOO — 09V99 + 0.19100
V99 — O.9V98 + 0.1699
Vog = O.9V97 + 0'1998

VIOO — 0.10100 + O9V99
— 0.19100 + 09(01999 + O.9V98)

UF

Bias Correction

Theinitial average va

ues are bad estimates!

This can be solved wi

v=pv_+U =P, —s

VO:O

h bias correction (dividing by 1 — f)

P+ (1= P,
_ —

~0.001966, + 0.026,

v, = 0.98v, + 0.026 V
: ! 1 ’ 1 —0.982
vy = 0.98v; +0.026, ~0.001966, + 0.026,
=0.98 - 0.026, + 0.026, 2= 0.0396
= 0.001960, + 0.020, Weighted Average!
Vl - 056 Vl - 28
V2 — 051136 V2 ~ 13

UF

Meses do ano

16

Gradient Descent with Momentum

Mini-batch Gradient Descent Gradient Descent with Momentum
dw, db = backward(X")
Vdw = - Vdw + (1 — f)dw

Low learning rate to avoid divergence.

Ideal

w

Average close to zero
In the vertical axis!

Vdb = 8- Vdb + (1 — B)db

$ Slow learning on the

<> : .
horizontal axis

UF

vertical axis Wi
Fast learning on the bl

= W — aVdw
= b — aVdb

17

Root Mean Squared Propagation (RMSProp)

w

Average close to zero
In the vertical axis!

Mini-batch Gradient Descent RMSProp
Low learning rate to avoid divergence. dw, db = backward(Xt)
Sdw = - Sdw + (1 — f)dw? Small expected values
Ideal Sdb = f3- Sdb + (1 — p)db® | arqe expected values
$ Slow learning on the W=w—a dw
vertical axis v/ Sdw Dividing by a small number
i db
rIjas.t Ieatrnlmg.on the b—b— o
OfizOntalaxis \/Sdb Dividing by a large number

UF 18

Adaptive Moment Estimation (Adam)

Adam combines RMSProp and Momentum

dw,db = backward(X"

Vdw = B, - Vdw + (1 — B)dw, Vdb =3, - Vdb + (1 — B,)db
Sdw = B, - Sdw + (1 — p,)dw?, Sdb = B, - Sdb + (1 — f3,)db*

Vdw
Vdw = . Vdb =
1 = pi
Sd
Sdw = —2 Sdb =
-
Vdw
W=w-—a
Sdw
Vdb
b=b-—a
Sdb

UF

Momentum

RMSProp

Recomendations for the values
of hyperparameters:

ﬁl — 09
B, = 0.999

19

Next Lecture

L10: Convolutional Neural Networks

Convolutions, Filters, Padding, Strided Convolutions, Volume Convolutions

UF

20

