
INF721

L9: Advanced Optimization Algorithms

Deep Learning

2024/2

1



AI in the News
Computer Scientist were awared the Nobel Prize of Physics and Chemistry!

2



Logistics

Announcements 
‣ Next class (Monday) we will have our Midterm I! 
‣ PA2 - Multilayer Perceptron is due today (11:59pm)! 

Last Lecture 

‣ L1/L2 Regularization 

‣ Vector/Matrix Norms 

‣ Dropout 

‣ Early Stopping 

‣ Data Augmentation

3



Lecture Outline

‣ Mini-batch Gradient Descent 

‣ Gradient Descent with Momentum 

‣ Exponential Moving Average 

‣ Root Mean Squared Propagation (RMSProp) 

‣ Adaptive Moment Estimation (Adam)

4



Deep Learning in Practice
Building good deep learning models involves a iterative process of training and validation:

5

High Bias? 
Training Set

High Variance? 
Vallidation Set

Done 
Report Test 

Performance 

No

Start with an 
initial set of 
hyperparameters

Yes

No

Yes

Reduced training time is a crucial factor in creating successful neural network models: 

‣ Vectorization/GPUs 

‣ Faster Optimization Algorithms

Training time is the longest of process among them, 
especially in large datasets



Mini-batch Gradient Descent

6

Large datasets (e.g., 5M) won’t fit entirely in the GPU memory, so to vectorize model training:  

1. Divide the training set in subsets of size  (e.g, 32) called mini-batches  

2. Update the weights for each mini-batch ( , ) , instead of once for the entire dataset 

s
X{t} Y{t} X

X{2} X{m//b}X{1}

Y{1} Y{2}

X x(1) x(2) x(32) x(33) x(64) x(n−1) x(n)x(n−32)

Y y(1) y(2) y(32) y(33) y(64) y(n−1) y(n)y(n−32)

Y{m//s}



Mini-batch Gradient Descent

7

n_batches = m//s 

for e in range(n_epochs): 
# For each minibatch X_t 
for t in range(n_batches): 
# Forward pass for X_t 
Yh_t = forward_pass(X_t) 
# Loss for Yh_t  
l_t = 1/s * np.sum(L(Yh_t, Y_t)) 
# Backpropagation of l_t 
dW_t, db_t = backward_pass(X_t, Y_t) 
# Weight updates 
W[l] = W[l] - lr * dW_t 
b[l] = b[l] - lr * db_t

Update weights for each mini-batch  , 
instead of once for the entire dataset   

‣ Multiple weight updates per epoch 

‣ Batch Gradient Descent:  

‣ Stochastic  Gradient Descent:  

‣ Mini-batch  Gradient Descent: 

X{t}

X

s = m

s = 1

1 > s < m



8

Learning Curves

‣ BGD computes the exact gradient using the 
entire dataset in each iteration; 

‣ The curve often shows a steady, monotonic 
decrease in loss.

‣ MBGD computes aproximate gradients using 
small subsets of the dataset; 

‣ The curve often show a noisier/more jagged 
decrease in loss.



Training Time

9

Batch Gradient Descent 
‣ A single weight update per epoch 
‣ Exact gradient, but slow updates 

Stochastic Gradient Descent 
‣  weight updates per epoch 
‣ Very fast weight updates, but very noisy gradient 
‣ Doesn’t use vectorization! 

Mini-batch Gradient Descent (most common!) 
‣ One weight update for each  mibi-bath  
‣ Fast update with approximate gradients

m

Xt



Training Time

10

Batch Gradient Descent 
‣  weight update per epoch for the entire dataset   
‣ Slow but precise updates, due to exact gradient 

Stochastic Gradient Descent 
‣  updates per epoch, one for each example  
‣ Very fast but very imprecise weight updates, due to very 

noisy gradient 
‣ Doesn’t use vectorization! 

Mini-batch Gradient Descent (most common!) 
‣ Multiple updates per epoch, one for each mini-batch  
‣ Fast update with approximate gradients

1 X

m x(i)

X{t}



Choosing batch size

11

For small datasets: 

‣ Batch Gradient Descent 

For large dataset: 

‣ Mini-batch Gradient Descent  

‣ Mini-batch size (hyperparmater): 

‣ Typically a power of two 

‣ Fits in your CPU/GPU memory 

‣ Examples: 32, 64, 128, 256, 512, 1024, …



Gradient Descent with Momentum

12



Moving Average

13

Moving averages are averaging metrics for time series:

Simple Moving Average (SMA): 

 

Weighted Moving Average (WMA):  

 

Exponential Moving Average (EMA): 

 

vt =
1
T

⋅
T

∑
t=1

θt

vt =
1

∑T
t=1 wt

⋅
T

∑
t=1

θt ⋅ wt

vt = βvt−1 + (1 − β)θt

Te
m

pe
ra

tu
re

Months

θ1 = 28
θ2 = 23
θ3 = 32

. . .
θ180 = 16
θ181 = 18

. . .



Exponential Moving Average

14
Te

m
pe

ra
tu

ra

Months

vt = βvt−1 + (1 − β)θt

v1 = 0.9v0 + 0.1θ1

v2 = 0.9v1 + 0.1θ2

v3 = 0.9v2 + 0.1θ3

β = 0.9

. . .

 is approx.  the average of the last    samples!vt
1

1 − β
β = 0.9 =

1
1 − 0.9

≈ 10 days

β = 0.98 =
1

1 − 0.98
≈ 50 days

The higher the  , the slower the average adapts 
to the new samples 

β
θi

β = 0.5 =
1

1 − 0.5
≈ 2 days

θ1 = 28
θ2 = 23
θ3 = 32

. . .
θ180 = 16
θ181 = 24

. . .



Exponential Moving Average

15

vt = βvt−1 + (1 − β)θt

v100 = 0.9v99 + 0.1θ100

v99 = 0.9v98 + 0.1θ99

v98 = 0.9v97 + 0.1θ98

v100 = 0.1θ100 + 0.9v99

= 0.1θ100 + 0.9(0.1θ99 + 0.9v98)
= 0.1θ100 + 0.9(0.1θ99 + 0.9(0.1θ98 + 0.9v97))
= 0.1θ100 + 0.1(0.9) ⋅ θ99 + 0.1(0.9)2 ⋅ θ98 + 0.1(0.9)3 ⋅ θ97 + . . .

The exponential moving average is a weighted sum of exponentially decreasing weights!

β = 0.9



Bias Correction

16

vt = βvt−1 + (1 − β)θt

v0 = 0
v1 = 0.98v0 + 0.02θ1

v2 = 0.98v1 + 0.02θ2

= 0.98 ⋅ 0.02θ1 + 0.02θ2

= 0.00196θ1 + 0.02θ2

v1 = 0.56
v2 = 0.51136

The initial average values are bad estimates! 
This can be solved with bias correction (dividing by )1 − βt

vt =
βvt−1 + (1 − β)θt

1 − βt

v2 =
0.00196θ1 + 0.02θ2

1 − 0.982

v2 =
0.00196θ1 + 0.02θ2

0.0396

Meses do ano

Weighted Average!

v1 = 28
v2 ≈ 13

θ1 = 28
θ2 = 23
θ3 = 32

. . .
θ180 = 16
θ181 = 24

. . .



Gradient Descent with Momentum

17

Mini-batch Gradient Descent 
Low learning rate to avoid divergence.

Slow learning on the 
vertical axis

Fast learning on the 
horizontal axis

Ideal

dw, db = backward(Xt)

W[l] = W[l] − αVdw
b[l] = b[l] − αVdb

Vdw = β ⋅ Vdw + (1 − β)dw
Vdb = β ⋅ Vdb + (1 − β)db

Gradient Descent with Momentum

w

b

Average close to zero 
in the vertical axis!



Root Mean Squared Propagation (RMSProp)

18

Mini-batch Gradient Descent 
Low learning rate to avoid divergence.

Average close to zero 
in the vertical axis!

w

b

dw, db = backward(Xt)

w = w − α
dw

Sdw

b = b − α
db

Sdb

Sdw = β ⋅ Sdw + (1 − β)dw2

Sdb = β ⋅ Sdb + (1 − β)db2

RMSProp

Small expected values

Large expected values

Dividing by a small number

Dividing by a large number

Slow learning on the 
vertical axis

Fast learning on the 
horizontal axis

Ideal



Adaptive Moment Estimation (Adam)

19

dw, db = backward(Xt)

w = w − α
Vdw

Sdw

b = b − α
Vdb

Sdb

Sdw = β2 ⋅ Sdw + (1 − β2)dw2, Sdb = β2 ⋅ Sdb + (1 − β2)db2

Adam combines RMSProp and Momentum

Vdw = β1 ⋅ Vdw + (1 − β1)dw, Vdb = β1 ⋅ Vdb + (1 − β1)db  Momentum

RMSProp

Vdw =
Vdw

1 − βt
1

, Vdb =
Vdb

1 − βt
1

Sdw =
Sdw

1 − βt
2

, Sdb =
Sdb

1 − βt
2

β1 = 0.9
β2 = 0.999

Recomendations for the values 
of hyperparameters:



Next Lecture

L10: Convolutional Neural Networks 

Convolutions, Filters, Padding, Strided Convolutions, Volume Convolutions

20


