L9: Advanced Optimization Algorithms

Deep Learning

1

AI in the News

Computer Scientist were awared the Nobel Prize of Physics and Chemistry!

that enable machine learning with artificial neural networks"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

THE ROYAL SWEDISH ACADEMY OF SCIENCES

Logistics

Announcements

- ‣ Next class (Monday) we will have our Midterm I!
- ‣ PA2 Multilayer Perceptron is due today (11:59pm)!

Last Lecture

- ‣ L1/L2 Regularization
	- ‣ Vector/Matrix Norms
- ‣ Dropout
- ‣ Early Stopping
- ‣ Data Augmentation

UFV

Lecture Outline

- ‣ Mini-batch Gradient Descent
- ‣ Gradient Descent with Momentum
	- ‣ Exponential Moving Average
- ‣ Root Mean Squared Propagation (RMSProp)
- ‣ Adaptive Moment Estimation (Adam)

4

Deep Learning in Practice

Building good deep learning models involves a iterative process of training and validation:

Reduced training time is a crucial factor in creating successful neural network models:

- ‣ Vectorization/GPUs
- ‣ **Faster Optimization Algorithms**

Training time is the longest of process among them,

Mini-batch Gradient Descent

Large datasets (e.g., 5M) won't fit entirely in the GPU memory, so to vectorize model training:

- 1. Divide the training set in subsets of size s (e.g, 32) called mini-batches
- 2. Update the weights for each mini-batch ($X^{\{t\}}$, $Y^{\{t\}}$) , instead of once for the entire dataset X

UFV

Mini-batch Gradient Descent

n_b atches = $m//s$

for e in range(n_epochs): *# For each minibatch X_t* **for** t in range(n_batches): *# Forward pass for X_t* $Yh_t = forward_pass(X_t)$ *# Loss for Yh_t* $l_t = 1/s * np.sum(L(Yh_t, Y_t))$ *# Backpropagation of l_t* dW_t , $db_t = backward_pass(X_t, Y_t)$ *# Weight updates* $W[U] = W[U] - Ur * dW_t$ $b[1] = b[1] - lr * db_t$

Update weights for each mini-batch $X^{\{t\}}$, instead of once for the entire dataset X

- ▶ Multiple weight updates per epoch
- ‣ Batch Gradient Descent: *s* = *m*
- ▶ Stochastic Gradient Descent: $s = 1$
- ‣ Mini-batch Gradient Descent: 1 > *s* < *m*

Learning Curves

- ‣ BGD computes the exact gradient using the entire dataset in each iteration;
- ▶ The curve often shows a steady, monotonic decrease in loss.

JFV

- ‣ MBGD computes aproximate gradients using small subsets of the dataset;
- ‣ The curve often show a noisier/more jagged decrease in loss.

Training Time

Batch Gradient Descent

- ‣ weight updates per epoch *m*
- Very fast weight updates, but very noisy gradient
- Doesn't use vectorization!
- ‣ A single weight update per epoch
- ‣ Exact gradient, but slow updates

Stochastic Gradient Descent

Mini-batch Gradient Descent (most common!)

- ‣ One weight update for each mibi-bath *Xt*
- ‣ Fast update with approximate gradients

Training Time

Batch Gradient Descent

- \blacktriangleright 1 weight update per epoch for the entire dataset X
- ‣ Slow but precise updates, due to exact gradient

Stochastic Gradient Descent

- $\blacktriangleright\; m$ updates per epoch, one for each example $x^{(i)}$
- ‣ Very fast but very imprecise weight updates, due to very noisy gradient
- ‣ Doesn't use vectorization!

- \blacktriangleright Multiple updates per epoch, one for each mini-batch $X^{\{t\}}$
- ‣ Fast update with approximate gradients

Mini-batch Gradient Descent (most common!)

Choosing batch size

11

For small datasets:

‣ Batch Gradient Descent

For large dataset:

- ‣ Mini-batch Gradient Descent
- ‣ Mini-batch size (hyperparmater):
	- ‣ Typically a power of two
	- ‣ Fits in your CPU/GPU memory
	- ‣ Examples: 32, 64, 128, 256, 512, 1024, …

Gradient Descent with Momentum

Moving Average

Moving averages are averaging metrics for time series:

Simple Moving Average (SMA):

Weighted Moving Average (WMA):

Exponential Moving Average (EMA):

$$
v_t = \frac{1}{T} \cdot \sum_{t=1}^{T} \theta_t
$$

$$
v_t = \frac{1}{\sum_{t=1}^T w_t} \cdot \sum_{t=1}^T \theta_t \cdot w_t
$$

$$
v_t = \beta v_{t-1} + (1 - \beta)\theta_t
$$

Months

Exponential Moving Average

$$
v_1 = 0.9v_0 + 0.1\theta_1
$$

$$
v_t = \beta v_{t-1} + (1 - \beta)\theta_t \qquad \beta = 0.9
$$

$$
v_2 = 0.9v_1 + 0.1\theta_2
$$

$$
v_3 = 0.9v_2 + 0.1\theta_3
$$

 v_t is approx. the average of the last $\frac{1}{1}$ samples! 1 $1 - \beta$ *β* = 0.9 = 1 $1 - 0.9$ ≈ 10 days *β* = 0.98 = 1 $1 - 0.98$ ≈ 50 days $\beta=0.5=$ 1 $1 - 0.5$ ≈ 2 days

UFV

 \bullet \bullet \bullet

The higher the β , the slower the average adapts to the new samples θ_i

Exponential Moving Average

= 0.1*θ*¹⁰⁰ + 0.9(0.1*θ*⁹⁹ + 0.9(0.1*θ*⁹⁸ + 0.9*v*97)) $\cdot \theta_{98} + 0.1(0.9)^3 \cdot \theta_{97} + \dots$

$$
v_{100} = 0.1\theta_{100} + 0.9v_{99}
$$

= 0.1 θ_{100} + 0.9(0.1 θ_{99} + 0.9v_{98})
= 0.1 θ_{100} + 0.9(0.1 θ_{99} + 0.9(0.1 θ_{98} + 0.
= 0.1 θ_{100} + 0.1(0.9) · θ_{99} + 0.1(0.9)² · θ

$$
v_t = \beta v_{t-1} + (1 - \beta)\theta_t \qquad \beta = 0.9
$$

 $v_{100} = 0.9v_{99} + 0.1\theta_{100}$ $v_{99} = 0.9v_{98} + 0.1\theta_{99}$ $v_{98} = 0.9v_{97} + 0.1\theta_{98}$

The **exponential moving average** is a weighted sum of exponentially decreasing weights!

Bias Correction

The initial average values are bad estimates! This can be solved with bias correction (dividing by $1-\beta^t$)

$$
v_t = \beta v_{t-1} + (1 - \beta)\theta_t \longrightarrow v_t = \frac{\beta v_{t-1} + (1 - \beta)}{1 - \beta t}
$$

\n
$$
v_0 = 0
$$

\n
$$
v_1 = 0.98v_0 + 0.02\theta_1
$$

\n
$$
v_2 = 0.98v_1 + 0.02\theta_2
$$

\n
$$
= 0.98 \cdot 0.02\theta_1 + 0.02\theta_2
$$

\n
$$
= 0.00196\theta_1 + 0.02\theta_2
$$

\n
$$
v_1 = 0.56
$$

\n
$$
v_2 = 0.51136
$$

\n
$$
v_1 = 28
$$

\n
$$
v_2 \approx 13
$$

\nUFV

Meses do ano

Gradient Descent with Momentum

Low learning rate to avoid divergence.

Slow learning on the 个 $\mathbf \Psi$ vertical axis

> Fast learning on the horizontal axis

UFV

- dw *,* $db = backward(X^t)$ $W^{[l]} = W^{[l]} - \alpha V dw$ $b^{[l]} = b^{[l]} - \alpha Vdb$ $Vdb = \beta \cdot Vdb + (1 - \beta)db$
- $Vdw = \beta \cdot Vdw + (1 \beta)dw$
-
-
-

Ideal

 \leftrightarrow

Gradient Descent with Momentum

Average close to zero in the vertical axis!

Root Mean Squared Propagation (RMSProp)

Average close to zero in the vertical axis!

rdp

 dw *,* $db = backward(X^t)$ $w = w - \alpha$ *dw Sdw* Dividing by a small number $b = b - a$ *db Sdb* Dividing by a large number $Sdw = \beta \cdot Sdw + (1-\beta)dw^2$ Small expected values $Sdb = \beta \cdot Sdb + (1 - \beta)db^2$ Large expected values

UFV

Adaptive Moment Estimation (Adam)

$$
dw, db = backward(X^t)
$$

 $Sdw = \beta_2 \cdot Sdw + (1 - \beta_2)dw^2$, $Sdb = \beta_2 \cdot Sdb + (1 - \beta_2)db^2$ $Vdw = \beta_1 \cdot Vdw + (1 - \beta_1)dw$, $Vdb = \beta_1 \cdot Vdb + (1 - \beta_1)db$ Momentum

$$
w = w - \alpha \frac{Vdw}{\sqrt{Sdw}}
$$

$$
b = b - \alpha \frac{Vdb}{\sqrt{Sdb}}
$$

UFV

Adam combines RMSProp and Momentum

-
- - RMSProp

$$
Vdw = \frac{Vdw}{1 - \beta_1^t}, \quad Vdb = \frac{Vdb}{1 - \beta_1^t}
$$

$$
Sdw = \frac{Sdw}{1 - \beta_2^t}, \quad Sdb = \frac{Sdb}{1 - \beta_2^t}
$$

$$
\begin{aligned}\n\beta_1 &= 0.9 \\
\beta_2 &= 0.999\n\end{aligned}
$$

Recomendations for the values of hyperparameters:

Next Lecture

L10: Convolutional Neural Networks

Convolutions, Filters, Padding, Strided Convolutions, Volume Convolutions

