

Deep Learning

L9: Advanced Optimization Algorithms

1

Al in the News

Computer Scientist were awared the Nobel Prize of Physics and Chemistry!

"for foundational discoveries and inventions that enable machine learning with artificial neural networks"

THE ROYAL SWEDISH ACADEMY OF SCIENCES

UFV

Logistics

Announcements

- Next class (Monday) we will have our Midterm I!
- ► PA2 Multilayer Perceptron is due today (11:59pm)!

Last Lecture

- ► L1/L2 Regularization
 - Vector/Matrix Norms
- Dropout
- Early Stopping
- Data Augmentation

UFV

· Midterm I! oday (11:59pm)!

Lecture Outline

- Mini-batch Gradient Descent
- Gradient Descent with Momentum
 - Exponential Moving Average
- Root Mean Squared Propagation (RMSProp)
- Adaptive Moment Estimation (Adam)

RMSProp) am)

Deep Learning in Practice

Building good deep learning models involves a iterative process of training and validation:

Reduced training time is a crucial factor in creating successful neural network models:

- Vectorization/GPUs
- Faster Optimization Algorithms

Training time is the longest of process among them,

Mini-batch Gradient Descent

Large datasets (e.g., 5M) won't fit entirely in the GPU memory, so to vectorize model training:

- 1. Divide the training set in subsets of size s (e.g, 32) called mini-batches
- 2. Update the weights for each mini-batch $(X^{\{t\}}, Y^{\{t\}})$, instead of once for the entire dataset X

UFV

Mini-batch Gradient Descent

n_batches = m//s

for e in range(n_epochs):
 # For each minibatch X_t
 for t in range(n_batches):
 # Forward pass for X_t
 Yh_t = forward_pass(X_t)
 # Loss for Yh_t
 l_t = 1/s * np.sum(L(Yh_t, Y_t))
 # Backpropagation of l_t
 dW_t, db_t = backward_pass(X_t, Y_t)
 # Weight updates
 W[l] = W[l] - lr * dW_t
 b[l] = b[l] - lr * db_t

Update weights for each mini-batch $X^{\{t\}}$, instead of once for the entire dataset X

- Multiple weight updates per epoch
- Batch Gradient Descent: s = m
- Stochastic Gradient Descent: s = 1
- \blacktriangleright Mini-batch Gradient Descent: 1 > s < m

Learning Curves

- BGD computes the exact gradient using the entire dataset in each iteration;
- The curve often shows a steady, monotonic decrease in loss.

IFV

- MBGD computes aproximate gradients using small subsets of the dataset;
- The curve often show a noisier/more jagged decrease in loss.

Training Time

Batch Gradient Descent

- A single weight update per epoch
- Exact gradient, but slow updates

Stochastic Gradient Descent

- *m* weight updates per epoch
- Very fast weight updates, but very noisy gradient
- Doesn't use vectorization!

Mini-batch Gradient Descent (most common!)

- One weight update for each mibi-bath X^t
- Fast update with approximate gradients

Training Time

Batch Gradient Descent

- 1 weight update per epoch for the entire dataset X
- Slow but precise updates, due to exact gradient

Stochastic Gradient Descent

- *m* updates per epoch, one for each example $x^{(i)}$
- Very fast but very imprecise weight updates, due to very noisy gradient
- Doesn't use vectorization!

Mini-batch Gradient Descent (most common!)

- Multiple updates per epoch, one for each mini-batch $X^{\{t\}}$
- Fast update with approximate gradients

1	1	٦
	~	/

Choosing batch size

For small datasets:

Batch Gradient Descent

For large dataset:

- Mini-batch Gradient Descent
- Mini-batch size (hyperparmater):
 - Typically a power of two
 - Fits in your CPU/GPU memory
 - Examples: 32, 64, 128, 256, 512, 1024, ...

11

Gradient Descent with Momentum

Moving Average

Moving averages are averaging metrics for time series:

Simple Moving Average (SMA):

$$v_t = \frac{1}{T} \cdot \sum_{t=1}^T \theta_t$$

Weighted Moving Average (WMA):

$$v_t = \frac{1}{\sum_{t=1}^T w_t} \cdot \sum_{t=1}^T \theta_t \cdot w_t$$

Exponential Moving Average (EMA):

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$

Months

Exponential Moving Average

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$
 $\beta = 0.9$

$$v_1 = 0.9v_0 + 0.1\theta_1$$
$$v_2 = 0.9v_1 + 0.1\theta_2$$

$$v_3 = 0.9v_2 + 0.1\theta_3$$

 v_t is approx. the average of the last $\frac{1}{1-\beta}$ samples! $\beta = 0.9 = \frac{1}{1 - 0.9} \approx 10 \text{ days}$ $\beta = 0.98 = \frac{1}{1 - 0.98} \approx 50$ days $\beta = 0.5 = \frac{1}{1 - 0.5} \approx 2 \text{ days}$

UFV

• • •

The higher the eta, the slower the average adapts to the new samples θ_i

Exponential Moving Average

The **exponential moving average** is a weighted sum of exponentially decreasing weights!

$$v_t = \beta v_{t-1} + (1 - \beta)\theta_t$$
 $\beta = 0.9$

 $v_{100} = 0.9v_{99} + 0.1\theta_{100}$ $v_{99} = 0.9v_{98} + 0.1\theta_{99}$ $v_{98} = 0.9v_{97} + 0.1\theta_{98}$

$$\begin{aligned} v_{100} &= 0.1\theta_{100} + 0.9v_{99} \\ &= 0.1\theta_{100} + 0.9(0.1\theta_{99} + 0.9v_{98}) \\ &= 0.1\theta_{100} + 0.9(0.1\theta_{99} + 0.9(0.1\theta_{98} + 0.9v_{98})) \\ &= 0.1\theta_{100} + 0.1(0.9) \cdot \theta_{99} + 0.1(0.9)^2 \cdot \theta_{99} \end{aligned}$$

 $.9v_{97}))$ $\theta_{98} + 0.1(0.9)^3 \cdot \theta_{97} + \dots$

Bias Correction

The initial average values are bad estimates! This can be solved with bias correction (dividing by $1-\beta^t$)

$$v_{t} = \beta v_{t-1} + (1 - \beta)\theta_{t} \implies v_{t} = \frac{\beta v_{t-1} + (1 - 1 - \beta t)}{1 - \beta t}$$

$$v_{0} = 0$$

$$v_{1} = 0.98v_{0} + 0.02\theta_{1} \qquad v_{2} = \frac{0.00196\theta_{1} + 1}{1 - 0.98}$$

$$v_{2} = 0.98v_{1} + 0.02\theta_{2} \qquad v_{2} = \frac{0.00196\theta_{1} + 1}{0.039}$$

$$= 0.00196\theta_{1} + 0.02\theta_{2} \qquad \text{Weighted Av}$$

$$v_{1} = 0.56 \qquad v_{2} = 0.51136 \qquad v_{1} = 28$$

$$v_{2} \approx 13$$

$$\mathsf{UFV}$$

Meses do ano

Gradient Descent with Momentum

Mini-batch	Gradient [Descent
	oradient i	Jescent

Low learning rate to avoid divergence.

Slow learning on the Υ \mathbf{V} vertical axis

Ideal

- Fast learning on the \leftrightarrow horizontal axis
- UFV

- $dw, db = backward(X^t)$ $Vdb = \beta \cdot Vdb + (1 - \beta)db$ $W^{[l]} = W^{[l]} - \alpha V dw$ $b^{[l]} = b^{[l]} - \alpha V db$
- $Vdw = \beta \cdot Vdw + (1 \beta)dw$

Average close to zero in the vertical axis!

Gradient Descent with Momentum

Root Mean Squared Propagation (RMSProp)

	atch Gradient Descent arning rate to avoid divergence.	RMSPro dw, db
Ideal		$Sdw = \mu$ $Sdb = \mu$
\$	Slow learning on the vertical axis	w = v
\longleftrightarrow	Fast learning on the horizontal axis	b = b

UFV

Average close to zero in the vertical axis!

rop

 $db = backward(X^{t})$ $= \beta \cdot Sdw + (1 - \beta)dw^{2} \text{ Small expected values}$ $= \beta \cdot Sdb + (1 - \beta)db^{2} \text{ Large expected values}$ $= w - \alpha \frac{dw}{\sqrt{Sdw}} \text{ Dividing by a small number}$ $= b - \alpha \frac{db}{\sqrt{Sdb}} \text{ Dividing by a large number}$

Adaptive Moment Estimation (Adam)

Adam combines RMSProp and Momentum

$$dw, db = backward(X^t)$$

 $Vdw = \beta_1 \cdot Vdw + (1 - \beta_1)dw, \quad Vdb = \beta_1 \cdot Vdb + (1 - \beta_1)db$ $Sdw = \beta_2 \cdot Sdw + (1 - \beta_2)dw^2, \quad Sdb = \beta_2 \cdot Sdb + (1 - \beta_2)db^2$

$$Vdw = \frac{Vdw}{1 - \beta_1^t}, \quad Vdb = \frac{Vdb}{1 - \beta_1^t}$$
$$Sdw = \frac{Sdw}{1 - \beta_2^t}, \quad Sdb = \frac{Sdb}{1 - \beta_2^t}$$

$$w = w - \alpha \frac{Vdw}{\sqrt{Sdw}}$$
$$b = b - \alpha \frac{Vdb}{\sqrt{Sdb}}$$

UFV

- $(eta_1)db$ Momentum
 - db^2 RMSProp

Recomendations for the values of hyperparameters:

 $\beta_1 = 0.9$ $\beta_2 = 0.999$

Next Lecture

L10: Convolutional Neural Networks

Convolutions, Filters, Padding, Strided Convolutions, Volume Convolutions

