L8: Regularization

Deep Learning

1

Logistics

Announcements

- ‣ Midterm I is next week!
- ‣ FP1 Project Proposal is out!

Last Lecture

- ‣ Dataset Splitting Techniques
- ‣ Regression evaluation metrics
	- ‣ MSE, MAE, RMSE, R-squared
- ‣ Classification evaluation metrics
	- ‣ Confusion matrix
	- ‣ Accuracy, precision, recall, f1-score

Lecture Outline

- ‣ Experiments with neural networks
- ‣ Dealing with underfiting
- ‣ Dealing with overfitting
	- ‣ Regularization
		- ‣ L1 Regularization
		- ‣ L2 Regularization
		- ‣ Dropout

How de we choose number of hidden layers, number of hidden units, activation funtions, learning rate, …? **Experiment with different configurations and pick the one with best performance on the validation set!**

Experimenting With Neural Networks

Experiments with Neural Networks Different results can be obtained when experimenting with neural networks:

Experiments with Neural Networks

Image Classification of cats vs. dogs Assume balanced dataset and a human baseline with prediction accuracy ~100%

Experimenting With Neural Networks

Regularization

In Machine Learning, **regularization** consistst of simplifying models with the

goal of reducing overfit:

- ‣ L1 regularization
- ‣ L2 regularization
- ‣ Dropout
- ‣ Early stopping (training for less time)
- ‣ Augmenting the dataset

Vector Norms

In Linear Algera, a **norm** is a function $\|\cdot\|$: $X \to \mathbb{R}^+$ that maps a vector into a real non-negative number with the following properties: ∥⋅∥ : *X* → ℝ⁺

For any vectors $x, y \in X$ *e* $\alpha \in \mathbb{R}$:

- 1. $\|\cdot\| \ge 0$ and $\|\mathbf{x}\| = 0$ if $\mathbf{x} = 0$
- 2. ∥**x** + **y**∥ ≤ ∥**x**∥ + ∥**y**∥
- 3. ∥*α***x**∥ = |*α*|∥**x**∥

Vector *l* **-norms** *^p*

Norms l^p are an especial type of norm, defined as follows: *p*

$$
l^{p} = ||\mathbf{x}||_{p} = (\sum_{i=1}^{n} |x_{i}|^{p})^{\frac{1}{p}}
$$

Two l^p norms are very common: ‣ Norm *l* \sum Norm $l^2 = ||\mathbf{x}||_2 = (\sum |x_i|^2)^{\frac{1}{2}} = \sqrt{2 \cdot (|\mathbf{x}_i|^2)^2}$ = Euclidian norm *p* $1 = ||\mathbf{x}||_1 = ($ *n* ∑ $i=1$ $|x_i|$ $\frac{1}{1}$ $\frac{1}{1}$ = $2 = ||\mathbf{x}||_2 = 0$ *n* ∑ *i*=1 *i*=1 $|x_i|$ $\frac{1}{2}$ $\frac{1}{2} = \sqrt{}$

Exercise: Vector Norms

Compute the norm l^1 and l^2 for the following weight vector:

 $w = [-1,2]$

11

$$
\|\mathbf{x}\|_{1} = (\sum_{i=1}^{n} |x_{i}|)
$$

$$
\|\mathbf{x}\|_{2} = \sqrt{(\sum_{i=1}^{n} |x_{i}|^{2})}
$$

Geometric Representation of Vector Norms *l p* Unit circle $(\mathbf{x} \in \mathbb{R}^2 : ||\mathbf{x}|| = 1)$ for norms l^1 and l^2 :

$$
l^{1} = ||\mathbf{x}||_{1} = (\sum_{i=1}^{n} |x_{i}|)
$$

$$
l^{2} = ||\mathbf{x}||_{2} = \sqrt{(\sum_{i=1}^{n} |x_{i}|^{2})}
$$

Matrix Norms

Matrix norms are functions that map a matrxi into a real non-negative number with the same properties of the vector norms. The matrix norms $\lVert \cdot \rVert_p$ treat a matrix $m \times n$ as a vector with mn dimensions:

$$
||A||_p = (\sum_{i=1}^m \sum_{j=1}^n |a_{ij}|^p)^{\frac{1}{p}}
$$

Two very popular matrix norms $\left\| \cdot \right\|_p$ are:

► Norm L1 ||A||₁ =
$$
\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|
$$

\n► Norm L2(Frobenius) ||A||₂ = $\sqrt{\left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|\right)}$

 \vert ²)

Exercise: Matrix Norms

Calculate the norm 1 and 2 for the following weight matrices:

$$
W = \begin{bmatrix} 0.1 & -0.05 \\ 0.02 & 0.15 \end{bmatrix}
$$

$$
||A||_1 = \sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|
$$

$$
||A||_2 = \sqrt{\left(\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2\right)}
$$

L1 Regularization

L1 regularization sums **the norm ||∙||** , to the loss function to penalize neural networks with weights with high values:

- \parallel_1 In linear/logistic regression, we use the vector norm instead of the matrix one!
-
- **L1 regularization makes the weight matrix** *W* **sparse!**

$$
L(h) = -\frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)}) + \frac{\lambda}{2m} \sum_{l} ||W^{[l]}||
$$

where λ is a hyperparameter controlling the penalization.

$$
||W^{[l]}||_1 = \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} |a_{ij}|
$$
 L1regula

L2 Regularization

L2 regulariztion sums **the square of the norm** $\left\| \cdot \right\|_2$ to the loss function to penalize neural networks with weights with high values:

$$
L(h) = -\frac{1}{m} \sum_{i=1}^{m} L(y^{(i)}, \hat{y}^{(i)}) + \frac{\lambda}{2m} \sum_{l} ||W^{[l]}||_2^2
$$

where λ is a hyperparameter controlling the penalization.

$$
||W^{[l]}||_2^2 = (\sqrt{(\sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} |a_{ij}|^2))^2 = \sum_{i=1}^{n^{[l-1]}} \sum_{j=1}^{n^{[l]}} |a_{ij}|
$$

- 2 In linear/logistic regression, we use the vector norm instead of the matrix one!
-

L2 regularization decays the weight matrix W over time, but doesn't tend **to make weights exactly zero!**

Exercise: Regularization

- $0.1 0.05$
-
- a) Gradient Descent with L1 regularization: W

b) Gradient Descent with L2 regularization: W

Considering a weight metrix $W = \begin{bmatrix} 0.1 & -0.03 \\ 0.02 & 0.15 \end{bmatrix}$, gradients $dW = \begin{bmatrix} 0.3 & 0.2 \\ 0.1 & -0.4 \end{bmatrix}$ and a learning rate of $\alpha = 0.1$, show how the weights would be updated after one step of gradient descent. $\begin{bmatrix} 0.02 & 0.05 \\ 0.02 & 0.15 \end{bmatrix}$, gradients $dW = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ 0.3 0.2 $0.1 - 0.4$

$$
W = W - \alpha(dW + \frac{\lambda}{m} sign(W))
$$

$$
W = W - \alpha (dW + \frac{\lambda}{m}W)
$$

The Effect of L2 Regularization

Weight update without regularization:

$$
W^{[l]} = W^{[l]} - \alpha dW^{[l]}\n\begin{array}{ccc}\n\text{Partial derivative of the} \\
\text{Weight update with regularization:} \\
W^{[l]} = W^{[l]} - \alpha (dW^{[l]} + \frac{\lambda}{m}W^{[l]})\n\end{array}\n\text{Partial deriv.}
$$
\n
$$
W^{[l]} = W^{[l]} - \frac{\alpha \lambda}{m}W^{[l]} - \alpha dW
$$
\n
$$
W^{[l]} = (1 - \frac{\alpha \lambda}{m})W^{[l]} - \alpha dW
$$
\n
$$
W^{[l]} = (1 - \frac{\alpha \lambda}{m})W^{[l]} - \alpha dW
$$
\n
$$
= 1 \longrightarrow \text{L2 regularization decreases}
$$
\n
$$
= 1 \longrightarrow \text{Rissalgebraician decreases}
$$
\n
$$
= 1 \longrightarrow \text{Rissalgebraician decays}
$$

he loss function with respect to W^l

 Π ivative of the regularized loss function with respect to W^l

 $\langle 1 \rangle$ L2 regularization decreases the values of weights $W^{[l]}$ and because of that

Why regularization prevents overfitting? $\hat{\mathcal{Y}}$ *x*3 *x*2 x_1 $L(h) = -\frac{1}{h}$ *m m* ∑ *i*=1 *L*(*y*(*i*) , *y* (*i*)) $W^{[1]}$ *W*^[2] *W*^[2]

Consider a neural network with 4 layers that is overfitting when trained with loss function $L.$ *Notice how the decision boundary is capturing the details of the training data.*

By reducing the weights of some neurons, regularization simplifies the assumption of a neural networks at training time, making the decision boundary simpler as well.

UFV

Dropout is a regularization technique that disables random neurons before

calculating the error for each example in the training set.

Each layer is given a probability to keep the neurons in that layer active before calculating the error for each example (i).

Dropout is a regularization technique that disables random neurons before calculating the error for each example in the training set.

Dropout is a regularization technique that disables random neurons before

calculating the error for each example in the training set.

UFV

Dropout is a regularization technique that disables random neurons before

calculating the error for each example in the training set.

A different neural network configuration is trained for each example (i), forcing a distribution of weights among the neurons of a layer in a more uniform way, not on just one or a few inputs.

Data Augmentation

Data Augmentation consists of generating new examples to your dataset by

Flip Rotate

Distort Distort + Rotate

applying transformations the original examples of your dataset:

Original

Original

Early Stopping

Early stopping consists of running gradient descent for less epochs.

Next Lecture

L9: Advanced Optimization Algorithms Mini-batch Gradient Descent, RMSProp, Adam

