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Logistics

Announcements 
‣ Midterm I is next week! 
‣ FP1 - Project Proposal is out! 

Last Lecture 
‣ Dataset Splitting Techniques 

‣ Regression evaluation metrics 

‣ MSE, MAE, RMSE, R-squared 

‣ Classification evaluation metrics 

‣ Confusion matrix 

‣ Accuracy, precision, recall, f1-score
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Lecture Outline

‣ Experiments with neural networks 

‣ Dealing with underfiting 

‣ Dealing with overfitting 

‣ Regularization 

‣ L1 Regularization 

‣ L2 Regularization 

‣ Dropout
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How de we choose number of hidden layers, number of hidden units, activation funtions, learning rate, …? 
Experiment with different configurations and pick the one with best performance on the validation set!
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Experimenting With Neural Networks



     

Our goal!

Experiments with Neural Networks
Different results can be obtained when experimenting with neural networks:
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Training error High Low Low

Validation error High High Low

Underfit 
(High bias)

Overfit 
(High variance) Good Fit



     

Our goal!

Experiments with Neural Networks
Image Classification of cats vs. dogs 
Assume balanced dataset and a human baseline with prediction accuracy ~100%

6

Accuracy 45% 99% 95%

Accuracy 42% 67% 94%

Underfit 
(High bias)

Overfit 
(High variance) Good Fit



Experimenting With Neural Networks
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It is almost impossible to guess the write values for hyperparameters in your first attempt to 
building a neural network, so here is a basic experimental recipe:

High Bias? 
Training Set

High Variance? 
Vallidation Set

Done 
Report Test 

Performance No

Start with an 
initial set of 
hyperparameters

Things to try: 
‣  Bigger network 
‣  Train longer 
‣  Other neural net. architecture 

Things to try: 
‣  Get more data 
‣  Regularization 
‣  Other neural net.

Yes

Yes

No



Regularization
In Machine Learning, regularization consistst of simplifying models with the 
goal of reducing overfit: 

‣ L1  regularization 

‣ L2 regularization 

‣ Dropout 

‣  Early stopping (training for less time) 

‣ Augmenting the dataset

8



Vector Norms
In Linear Algera, a norm is a function  that maps a vector into 
a real non-negative number with the following properties: 

For any vectors  e : 

1.  and  if  

2.  

3.

∥⋅∥ : X → ℝ+

x, y ∈ X α ∈ ℝ

∥⋅∥ ≥ 0 ∥x∥ = 0 x = 0

∥x + y∥ ≤ ∥x∥ + ∥y∥

∥αx∥ = |α |∥x∥
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Vector -normslp

Norms  are an especial type of norm, defined as follows: 

 

Two   norms are very common: 

‣ Norm  

‣ Norm  — Euclidian norm

lp

lp = ∥x∥p = (
n

∑
i=1

|xi |
p )

1
p

lp

l1 = ∥x∥1 = (
n

∑
i=1

|xi |
1 )1

1 =
n

∑
i=1

|xi |

l2 = ∥x∥2 = (
n

∑
i=1

|xi |
2 )1

2 = (
n

∑
i=1

|xi |
2 )
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Exercise: Vector Norms
Compute the norm  and  for the following weight vector: l1 l2

w = [−1,2]
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∥x∥1 = (
n

∑
i=1

|xi | )

∥x∥2 = (
n

∑
i=1

|xi |
2 )



Geometric Representation of Vector Norms lp

 l1 = ∥x∥1 = (
n

∑
i=1

|xi | )
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l2 = ∥x∥2 = (
n

∑
i=1

|xi |
2 )

Unit circle  for norms  and :(x ∈ ℝ2 : ∥x∥ = 1) l1 l2

x x



Matrix Norms
Matrix norms are functions that map a matrxi into a real non-negative number with the same properties 
of the vector norms. The matrix norms  treat a matrix  as a vector with  dimensions: 

 

Two very popular matrix norms   are: 

‣  Norm L1  

‣  Norm L2 (Frobenius) 

∥⋅∥p m × n mn

∥A∥p = (
m

∑
i=1

n

∑
j=1

|aij |
p )

1
p

∥⋅∥p

∥A∥1 =
m

∑
i=1

n

∑
j=1

|aij |

∥A∥2 = (
m

∑
i=1

n

∑
j=1

|aij |
2 )
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Exercise: Matrix Norms
Calculate the norm 1 and 2 for the following weight matrices: 

 W = [ 0.1 −0.05
0.02 0.15 ]
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 ∥A∥1 =
m

∑
i=1

n

∑
j=1

|aij |

∥A∥2 = (
m

∑
i=1

n

∑
j=1

|aij |
2 )



L1 Regularization
L1 regularization sums the norm  to the loss function to penalize neural networks with 
weights with high values: 

  

where  is a hyperparameter controlling the penalization. 

∥⋅∥1

L(h) = −
1
m

m

∑
i=1

L(y(i), ̂y(i)) +
λ

2m ∑
l

∥W[l]∥1

λ

∥W[l]∥1 =
n[l−1]

∑
i=1

n[l]

∑
j=1

|aij |
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In linear/logistic regression, 
we use the vector norm 
instead of the matrix one!

L1 regularization makes the weight matrix  sparse!W



L2 Regularization
L2 regulariztion sums the square of the norm  to the loss function to penalize neural 
networks with weights with high values: 

  

where  is a hyperparameter controlling the penalization. 

∥⋅∥2

L(h) = −
1
m

m

∑
i=1

L(y(i), ̂y(i)) +
λ

2m ∑
l

∥W[l]∥2
2

λ

∥W[l]∥2
2 = ( (

n[l−1]

∑
i=1

n[l]

∑
j=1

|aij |
2 ))2 =

n[l−1]

∑
i=1

n[l]

∑
j=1

|aij |
2
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In linear/logistic regression, 
we use the vector norm 
instead of the matrix one!

L2 regularization decays the weight 
matrix  over time, but doesn’t tend 
to make weights exactly  zero!

W



Exercise: Regularization
Considering a weight metrix , gradients  and a learning 

rate of , show how the weights would be updated after one step of gradient descent. 

a)  Gradient Descent with L1 regularization:  

b)  Gradient Descent with L2 regularization: 

W = [ 0.1 −0.05
0.02 0.15 ] dW = [0.3 0.2

0.1 −0.4]
α = 0.1

W = W − α(dW +
λ
m

sign(W))

W = W − α(dW +
λ
m

W)
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The Effect of L2 Regularization
Weight update without regularization: 

 

Weight update with regularization: 

W[l] = W[l] − αdW[l]

W[l] = W[l] − α(dW[l] +
λ
m

W[l])

W[l] = W[l] −
αλ
m

W[l] − αdW

W[l] = (1 −
αλ
m

)W[l] − αdW
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Partial derivative of the regularized loss function with respect to  Wl

Partial derivative of the loss function with respect to  Wl

< 1 L2 regularization decreases the values of weights  and because of that 
it’s also called Weight Decay.

W[l]



Why regularization prevents overfitting?

19

̂y

x3

x2

x1

L(h) = −
1
m

m

∑
i=1

L(y(i), ̂y(i))

Consider a neural network with 4 layers that is overfitting when trained with loss function .  
Notice how the decision boundary is capturing the details of the training data.

L

W[1] W[2] W[2]



Why regularization prevents overfitting?
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̂y

x3

x2

x1

λ
2m ∑

l

∥W[l]∥2
2 W[l] ≈ 0

By reducing the weights of some neurons, regularization simplifies the assumption of a neural 
networks at training time, making the decision boundary simpler as well.

L(h) = −
1
m

m

∑
i=1

L(y(i), ̂y(i)) +

W[1] W[2] W[2]



Dropout
Dropout is a regularization technique that disables random neurons before 
calculating the error for each example in the training set.
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̂y(i)

x(i)
3

x(i)
2

x(i)
1

 0.5  0.5 0.7

Each layer is given a probability to keep the neurons in that layer active before 
calculating the error for each example (i).



Dropout
Dropout is a regularization technique that disables random neurons before 
calculating the error for each example in the training set.
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̂y(1)

x(1)
3

x(1)
2

x(1)
1

 0.5  0.5 0.7



Dropout
Dropout is a regularization technique that disables random neurons before 
calculating the error for each example in the training set.
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̂y(2)

x(2)
3

x(2)
2

x(2)
1

 0.5  0.5 0.7



Dropout
Dropout is a regularization technique that disables random neurons before 
calculating the error for each example in the training set.
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̂y(3)

x(3)
3

x(3)
2

x(3)
1

 0.5  0.5 0.7

A different neural network configuration is trained for each example (i), forcing a 
distribution of weights among the neurons of a layer in a more uniform way, not on 
just one or a few inputs.



Data Augmentation 
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Data Augmentation consists of generating new examples to your dataset by 
applying transformations the original examples of your dataset:

Flip Rotate

Distort Distort + Rotate

Original

Original



Early Stopping
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Early stopping consists of running gradient descent for less epochs.
Lo

ss
 V

al
ue

Number of epochs

Training set error

Validation set error

1. Plot the learning curves on training and validation sets 
2. Stop at the epoch with best validation error



Next Lecture

L9: Advanced Optimization Algorithms 

Mini-batch Gradient Descent, RMSProp, Adam 
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