L7: Evaluting Neural Networks

Deep Learning

1

Logistics

Announcements

‣ PA2: Multilayer Perceptorn is out!

Last Lecture

- ‣ Backpropagation
	- ‣ Computational Graph
	- ‣ Demo
	- ‣ Logistic Regression
	- ‣ Multilayer Perceptron

Lecture Outline

- ‣ Dataset Split
- ‣ Regression
	- ‣ Evalutation Metrics
- ‣ Classification
	- ‣ Confusion Matrix
	- ‣ Evalutation Metrics
		- ‣ Accuracy, Precision, Recall, F1-Score

4

Multilayer Perceptrons are more generally called Fully-Connected Neural Networks, since they can be adjusted to support different: (a) nº of layers *L*, (b) nº of hidden units, and (c) activation functions *g*

UFV

How de we choose these hyperparameters (a), (b) and (c) ?

Fully-Connected Neural Networks

Supervised Deep Learning

Learned f

Train a neural network $h(\mathbf{x}) = \hat{y}$ from a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(m)}, y^{(m)})\}$ to predict the labels $y^{(i)}$ from the feature vectors $\mathbf{x}^{(i)}$, minimizing prediction error on unseen examples \mathbf{x}'

$$
\text{unction } h(\mathbf{x}) = \hat{\mathbf{y}}
$$

Evaluating Model's Performance

D_{tr} , D_{va} e D_{te}

Hypothesis h with high error in $D_{tr} \longrightarrow$ Underfit!

UFV

To evaluate a model on unseen examples, we typically divide the dataset D in 3 disjoint subsets:

Proportion of Dataset Splits

Traditional Machine Learning

- ▶ Big data regime: 1M examples
- ▶ Train/Test: 95/5%
- ‣ Train/Valid/Test: 98/1/1%

Modern Deep Learning

- ‣ Low data regime: 1K examples
- ‣ Train/Test: 70/30%
- ‣ Train/Valid/Test: 60/20/20%
- ‣ It's common practice to **not have a validation set**, especially in low data regimes.
	- ‣ In this case your test set is your validation set!
- ‣ **The subsets are disjoint!**
	- ‣ Their can't be examples in the training set in the validation or test set!

‣ The test set must simulate a real test scenario, i.e. you want to simulate the setting that you will

- ‣ You have to be very careful when you split the data in **Train**, **Validation**, **Test**.
- encounter in real life.
- ‣ Common techniques to split the dataset:
	- ‣ **Uniformely at random**, if the data is i.i.d Example: image classification
	- ‣ **By time**, if the data has a temporal component Example: spam filtering
- ‣ **Definitely never split alphabetically, or by feature values.**

How to Split the Dataset

When you are in a low data regime, using a single train-test split can lead to highly variable performance estimates. This problem can be solved by cross-validation:

- 1. Split the dataset into k equal parts (folds)
- 2. For each fold i from 1 to k :
	- \bullet Use fold i as the test set
	- Use the remaining $k 1$ folds as the **training set**
	- Train the model and evaluate on the test set
-

-fold Cross Validation *k*

UFV

*score*₂ *score*₂ *score*₃

Cross-validation

When you are in a low data regime, using a single train-test split can lead to highly variable performance estimates. This problem can be solved by cross-validation:

Leave-One-Out Cross Validation

- 1. Split the dataset into $k = N$ equal parts (folds)
- 2. For each fold i from 1 to N :
	- \bullet Use fold i as the test set
	- Use the remaining $N-1$ folds as the **training set**
	- Train the model and evaluate on the test set
- 3. Average the N evaluation scores (e.g., $score = \frac{1}{15}$)

 $score_1 score_2 \cdots score_{15}$

Cross-validation

Examples of Datasets Splits

11

Here is the splits of popular deep learning datasets:

ImageNet (images)

- ‣ 1.4 million images of 1000 classes
- ‣ Train/Valid/Test: 90/3/7%

MAESTRO Dataset (audio/MIDI)

- ‣ 1276 classical music pieces
- ‣ Train/Valid/Test: 75/10/15%

UFV

Penn Treebank (sentences)

- ‣ 46K sentences from Wall Street Journal
- ‣ Train/Valid/Test: 85/7.5/7.5%

MNIST (images)

- ‣ 70K images of handwritten digits (10 classes)
- ‣ Train/Test: 85/15%

Imbalanced Datasets

Ideally, when training classification models, your distribution of classes should be balanced:

With (especially extremelly) unbalanced datasets:

- ‣ Splitting the data randomly can **produce splits with different distribution of classes**
- ‣ Your model migh **overfitt to the majority class**!

UFV

Balancing Datasets

Oversampling – Increase the n^o of minority class samples. ‣ Duplicate existing samples or generating synthetic samples

Downsample – Decrease the n^o of majority class samples. ‣ Randomly select majority class examples to remove

Weights — Assign weights to classes in the loss function. $We want w_0 n_0 = w_1 n_1 =$ \rightarrow w_1 weight for the positive class $w_1 =$ \rightarrow w_0 weight for the negative class $w_0 =$ $n_0 + n_1$ 2 $n_0 + n_1$ $2n_1$ $n_0 + n_1$ $2n_0$

Supervised Deep Learning

Learned f

Train a neural network $h(\mathbf{x}) = \hat{y}$ from a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(m)}, y^{(m)})\}$ to predict the labels $y^{(i)}$ from the feature vectors $\mathbf{x}^{(i)}$, minimizing prediction error on unseen examples \mathbf{x}'

$$
\text{unction } h(\mathbf{x}) = \hat{\mathbf{y}}
$$

Regression Evaluation Metrics

Most metrics to evaluate the performance of regression models are based on the residuals $y-\hat{y}$, i.e., a difference between the true value y and the predicted value $\hat{y}.$

UFV

- ‣ Residual: *y* − *y*
- ‣ Popular evaluation metrics for regression models:

Mean Squared Error:
$$
MSE = \frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2
$$

\nMean Absolute Error: $MAE = \frac{1}{m} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$
\nRoot Mean Squared Error: $RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}$
\nR-squared: $R^2 = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{m} (y^{(i)} - \bar{y}^{(i)})^2}$

Mean Squared and Absolute Errors

Mean Squared Error: $MSE(h) = \frac{1}{h} \sum_{i} (y^{(i)} - \hat{y}^{(i)})^2$ – Average of squared differences between predicted and actual values 1 *m n* ∑ *i*=1 $(y^{(i)} - \hat{y}^{(i)})^2$ **∣**

- ‣ Sensitive to outliers due to squaring
- ‣ Units: Squared units of the target variable
- ‣ Use when: Large errors are particularly undesirable (e.g., predicting stock prices)

Mean Absolute Error: $MAE(h) = \frac{1}{2} \sum |y^{(i)} - \hat{y}^{(i)}|$ — Average of absolute differences between predicted and actual values 1 *m n* ∑ *i*=1 $|y^{(i)} - \hat{y}^{(i)}|$ **</u>**

- Less sensitive to outliers than MSE
- ‣ Units: Same as the target variable (Easier to interpret than MSE)
- ‣ Use when: You want to treat all errors equally (e.g., forecasting daily temperature)

‣ Sensitive to outliers

UFV

- ‣ Units: Same as the target variable (Easier to interpret than MSE)
- ‣ Use when: You want a balance between MSE and MAE properties (e.g., estimating house prices)

Root Mean Squared Error:
$$
RMSE(h) = \sqrt{\frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}
$$
 = Square root of MSE

̂

Coefficient of determination (R2)

UFV

Measures the proportion of variance that is explained by the model. In other words, it compares the fit of a model (red line) to that of a simple mean model (green line).

- ‣ Values range from 0 to 1
- \blacktriangleright The higher the R^2 , the better the model
- ‣ Scale-independent, allowing comparisons across different datasets

$$
R^{2} = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{m} (y^{(i)} - \bar{y}^{(i)})^{2}}
$$

Classification Evaluation Metrics

Most metrics to evaluate the performance of classification models are based on the **confusion matrix**, which shows the number of true and false negatives and positives:

Confusion Matrix

Classification Evaluation Metrics

Based on the confusion matrix, we can compute the following performance metrics:

UFV

Predicted

Multiclass Classification Evaluation Metrics

Accuracy, Precision, Recall and F1-scores can also be used in multiclass problems:

Predicted

- \triangleright **Accuracy**: (TP1 + TP2 + TP3)/ Total = (50 + 80 + 35)/ 200 = 0.825 (82.5%)
- \triangleright **Precision**: $(P1 + P2 + P3)/3 = (50/60 + 80/96 + 35/44)/3 = 0.845(84.5%)$
- \triangleright **Recall**: $(R1 + R2 + R3)/3 = (50 + 80 + 35)/200 = 0.822 (82.2%)$
- ‣ **F1-scores**: 2 * (Macro-Precision * Macro-Recall) / (Macro-Precision + Macro-Recall)

UFV

Next Lecture

L8: Regularization & Normalization

Techniques to reduce overfitting and improve model's performance

