

Deep Learning

L7: Evaluting Neural Networks

Logistics

Announcements

► PA2: Multilayer Perceptorn is out!

Last Lecture

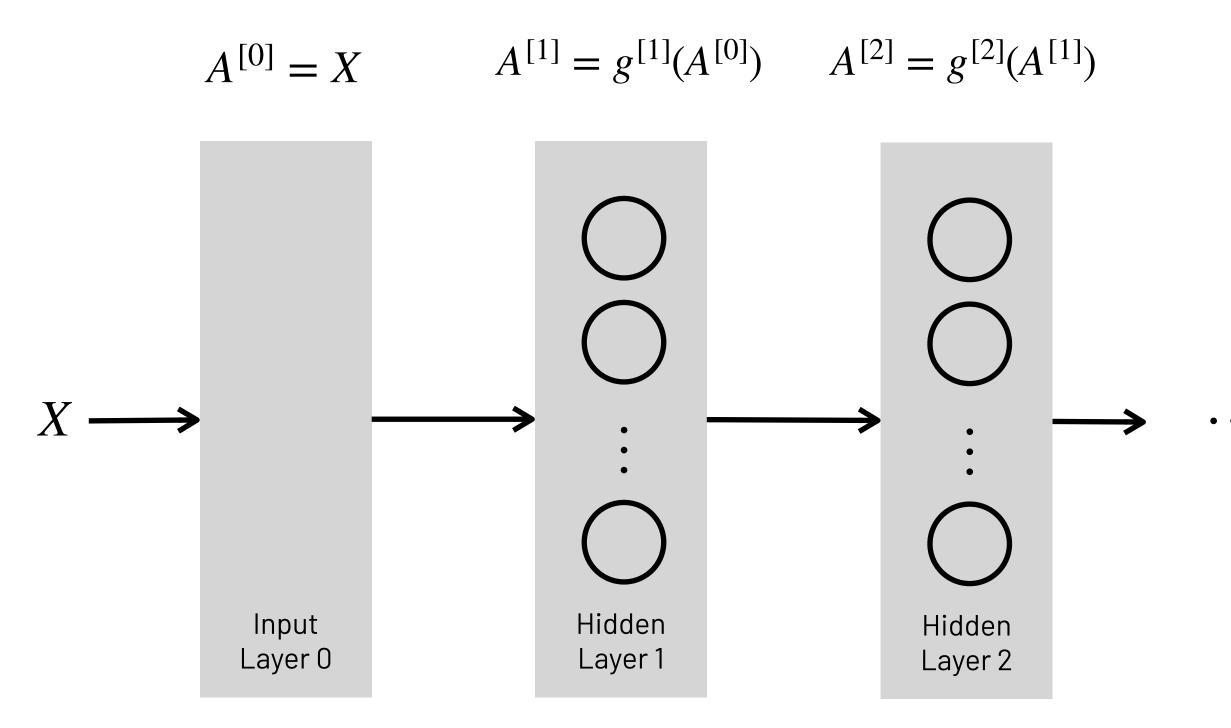
- Backpropagation
 - Computational Graph
 - Demo
 - Logistic Regression
 - Multilayer Perceptron

Lecture Outline

- Dataset Split
- Regression
 - Evaluation Metrics
- Classification
 - Confusion Matrix
 - Evaluation Metrics
 - Accuracy, Precision, Recall, F1-Score

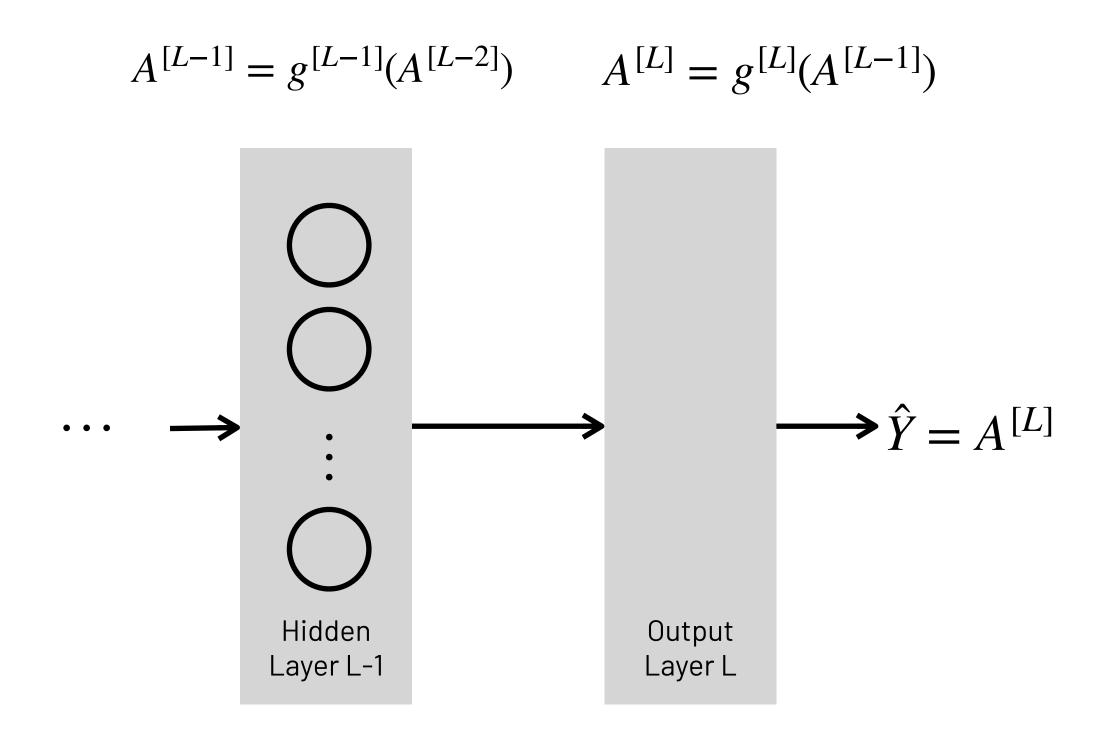
Fully-Connected Neural Networks

Multilayer Perceptrons are more generally called Fully-Connected Neural Networks, since they can be adjusted to support different: (a) n^o of layers L, (b) n^o of hidden units, and (c) activation functions g



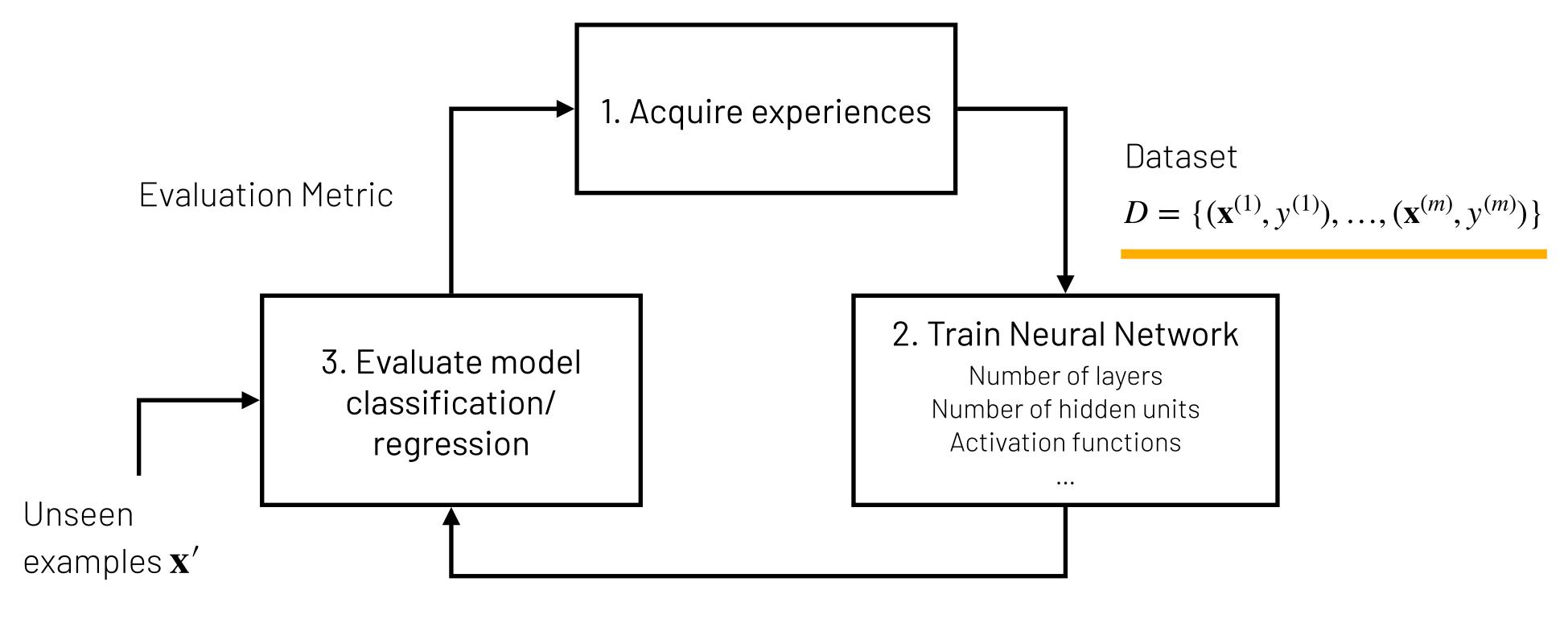
(IFV

How de we choose these hyperparameters (a), (b) and (c)?



4

Supervised Deep Learning



Learned f

Train a neural network $h(\mathbf{x}) = \hat{y}$ from a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$ to predict the labels $y^{(i)}$ from the feature vectors $\mathbf{x}^{(i)}$, minimizing prediction error on unseen examples \mathbf{x}'

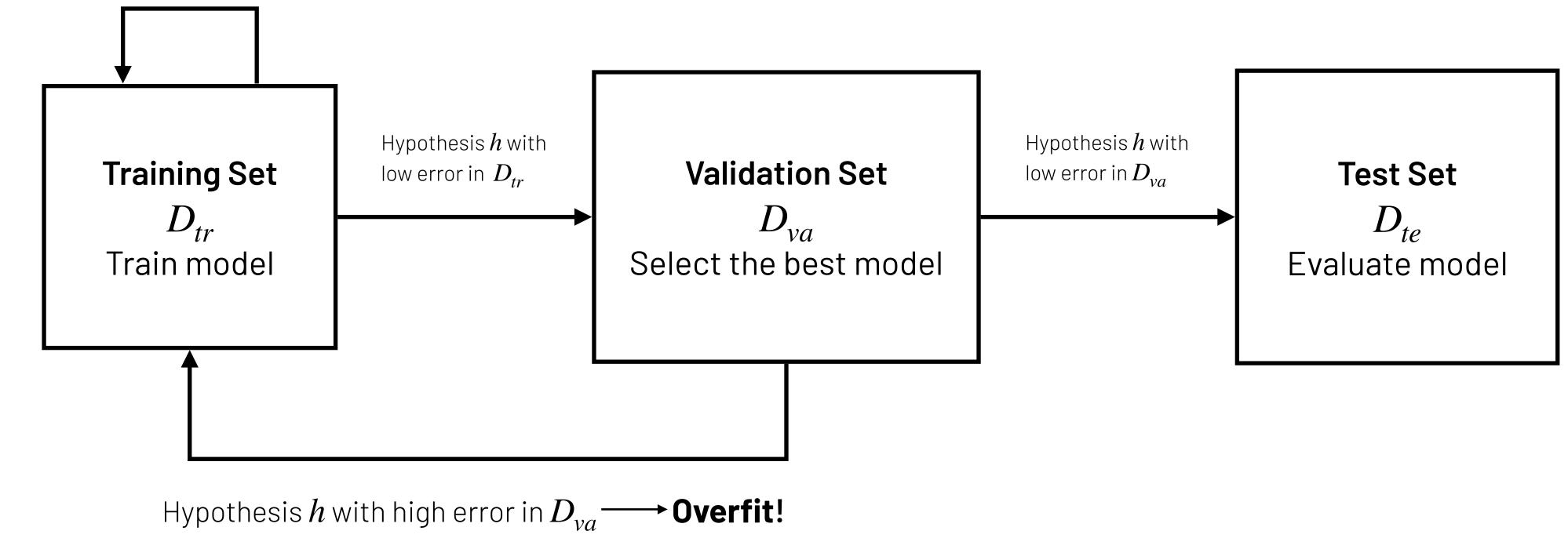
unction
$$h(\mathbf{x}) = \hat{y}$$

Evaluating Model's Performance

$D_{tr}, D_{va} \in D_{te}$

Hypothesis h with high error in $D_{tr} \longrightarrow$ Underfit!

(IFV



To evaluate a model on unseen examples, we typically divide the dataset D in 3 disjoint subsets:

Proportion of Dataset Splits

Dataset:

Training

Traditional Machine Learning

- Low data regime: 1K examples
- ▶ Train/Test: 70/30%
- ► Train/Valid/Test: 60/20/20%
- It's common practice to not have a validation set, especially in low data regimes.
 - In this case your test set is your validation set!
- The subsets are disjoint!
 - Their can't be examples in the training set in the validation or test set!

	Validation	Test
--	------------	------

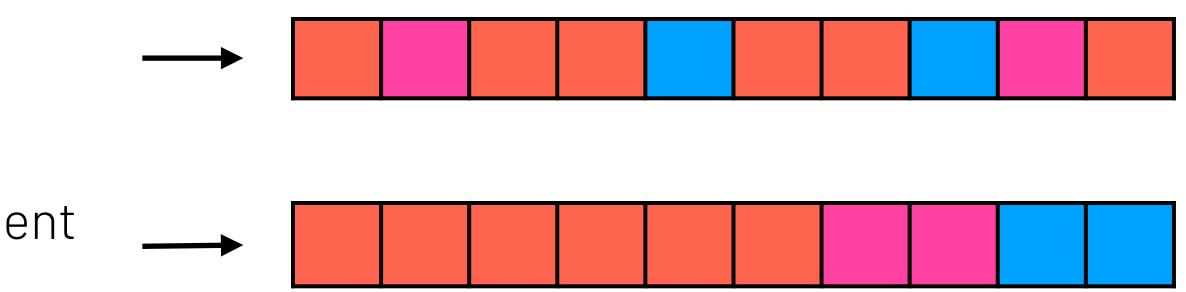
Modern Deep Learning

- Big data regime: 1M examples
- ▶ Train/Test: 95/5%
- Train/Valid/Test: 98/1/1%

How to Split the Dataset

- You have to be very careful when you split the data in Train, Validation, Test.
- encounter in real life.
- Common techniques to split the dataset:
 - Uniformely at random, if the data is i.i.d Example: image classification
 - **By time**, if the data has a temporal component Example: spam filtering
- Definitely never split alphabetically, or by feature values.

The test set must simulate a real test scenario, i.e. you want to simulate the setting that you will



Cross-validation

When you are in a low data regime, using a single train-test split can lead to highly variable performance estimates. This problem can be solved by cross-validation:

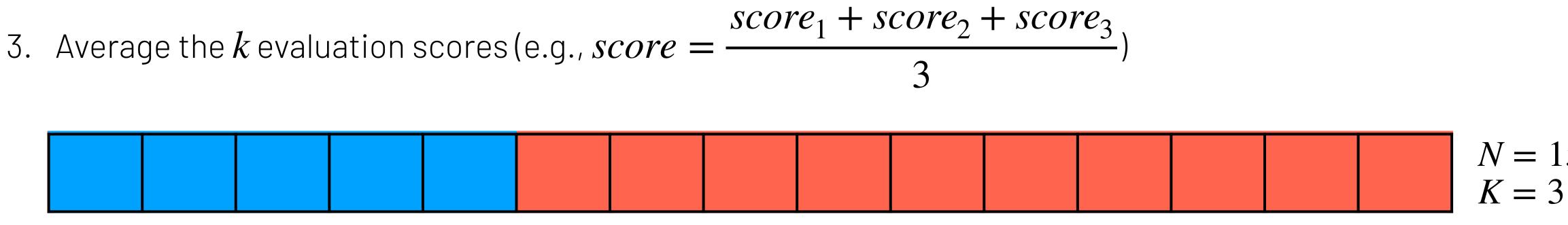
k-fold Cross Validation

- Split the dataset into k equal parts (folds)
- 2. For each fold i from 1 to k:
 - Use fold *i* as the **test set**

score₁

UFV

- Use the remaining k-1 folds as the **training set**
- Train the model and evaluate on the test set



score₂

score₃

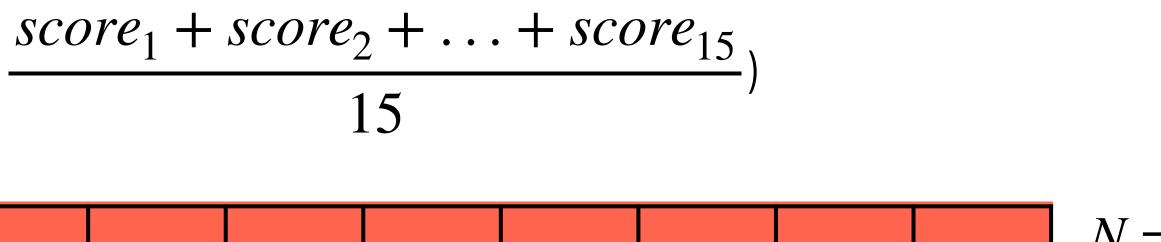
Cross-validation

When you are in a low data regime, using a single train-test split can lead to highly variable performance estimates. This problem can be solved by cross-validation:

Leave-One-Out Cross Validation

- Split the dataset into k = N equal parts (folds)
- 2. For each fold i from 1 to N:
 - Use fold *i* as the **test set**
 - Use the remaining N-1 folds as the **training set**
 - Train the model and evaluate on the test set
- 3. Average the N evaluation scores (e.g., score =

 $score_1 \ score_2 \ \cdots$



 \cdots score₁₅

Examples of Datasets Splits

Here is the splits of popular deep learning datasets:

ImageNet (images)

- ▶ 1.4 million images of 1000 classes
- Train/Valid/Test: 90/3/7%

Penn Treebank (sentences)

- 46K sentences from Wall Street Journal
- Train/Valid/Test: 85/7.5/7.5%

MAESTRO Dataset (audio/MIDI)

- ► 1276 classical music pieces
- Train/Valid/Test: 75/10/15%

UFV

MNIST (images)

- 70K images of handwritten digits (10 classes)
- ▶ Train/Test: 85/15%

11

Imbalanced Datasets

Ideally, when training classification models, your distribution of classes should be balanced:

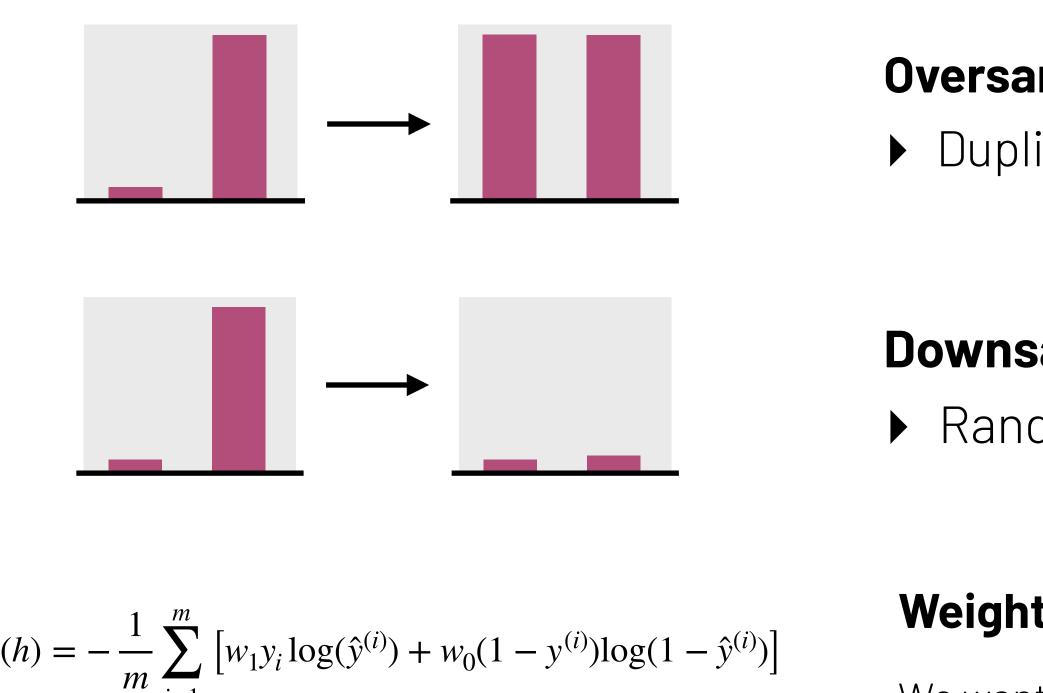


With (especially extremelly) unbalanced datasets:

- Splitting the data randomly can produce splits with different distribution of classes
- Your model migh overfitt to the majority class!

UFV

Balancing Datasets



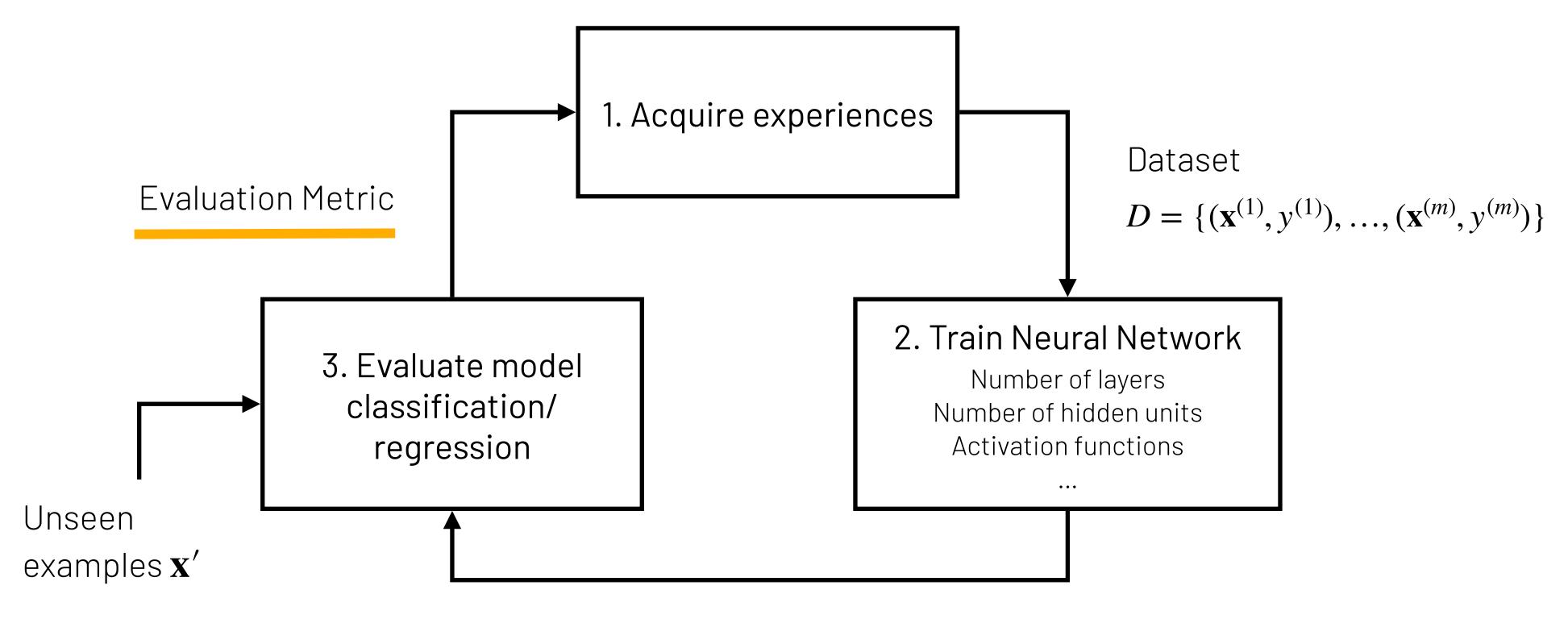
 $L(h) = -\frac{1}{m} \sum_{i=1}^{m} \left[w_1 y_i \log(\hat{y}^{(i)}) + w_0 (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]$

Oversampling – Increase the n° of minority class samples. Duplicate existing samples or generating synthetic samples

Downsample – Decrease the n° of majority class samples. Randomly select majority class examples to remove

Weights – Assign weights to classes in the loss function. We want $w_0 n_0 = w_1 n_1 = \frac{n_0 + n_1}{2}$ w_1 weight for the positive class $w_1 = \frac{n_0 + n_1}{2n_1}$ • w_0 weight for the negative class $w_0 = \frac{n_0 + n_1}{2n_0}$

Supervised Deep Learning



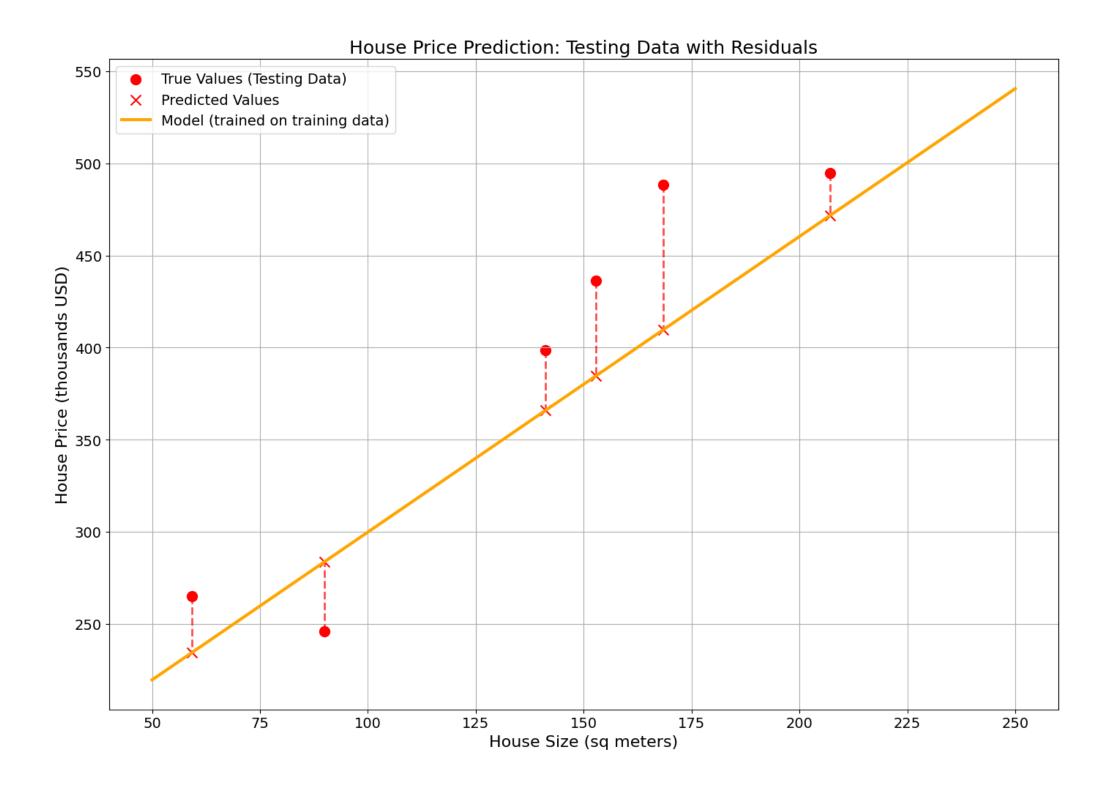
Learned f

Train a neural network $h(\mathbf{x}) = \hat{y}$ from a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$ to predict the labels $y^{(i)}$ from the feature vectors $\mathbf{x}^{(i)}$, minimizing prediction error on unseen examples \mathbf{x}'

unction
$$h(\mathbf{x}) = \hat{y}$$

Regression Evaluation Metrics

Most metrics to evaluate the performance of regression models are based on the residuals $y - \hat{y}$, i.e., a difference between the true value y and the predicted value \hat{y} .



UFV

- ▶ Residual: $y \hat{y}$
- Popular evaluation metrics for regression models:

Mean Squared Error:
$$MSE = \frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2$$

Mean Absolute Error: $MAE = \frac{1}{m} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}|$
Root Mean Squared Error: $RMSE = \sqrt{\frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2}$
R-squared: $R^2 = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^2}{\sum_{i=1}^{m} (y^{(i)} - \bar{y}^{(i)})^2}$

Mean Squared and Absolute Errors

Mean Squared Error: $MSE(h) = \frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - \hat{y}^{(i)})^2 - Average of squared differences between predicted and actual values$

- Sensitive to outliers due to squaring
- Units: Squared units of the target variable
- Use when: Large errors are particularly undesirable (e.g., predicting stock prices)

Mean Absolute Error: $MAE(h) = \frac{1}{m} \sum_{i=1}^{n} |y^{(i)} - \hat{y}^{(i)}| - Average of absolute differences between predicted and actual values$

- Less sensitive to outliers than MSE
- Units: Same as the target variable (Easier to interpret than MSE)
- Use when: You want to treat all errors equally (e.g., forecasting daily temperature)

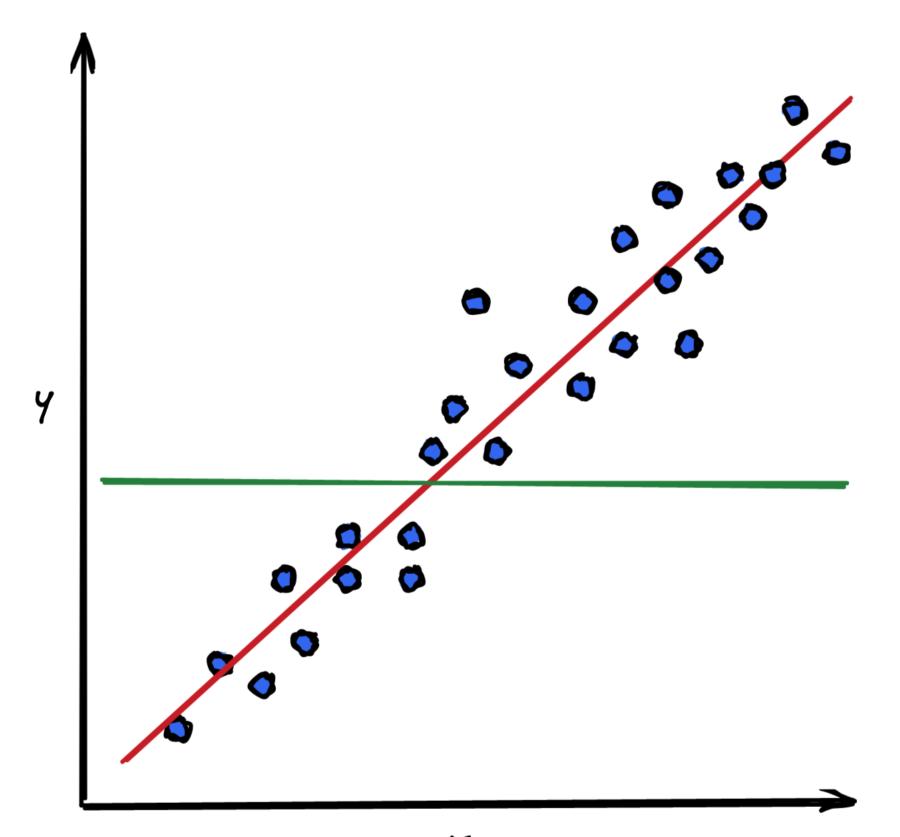
Root Mean Squared Error:
$$RMSE(h) = \sqrt{\frac{1}{m} \sum_{i=1}^{n} (y^{(i)})}$$

Sensitive to outliers

- Units: Same as the target variable (Easier to interpret than MSE)
- Use when: You want a balance between MSE and MAE properties (e.g., estimating house prices)

 $(-\hat{v}^{(i)})^2 - Square root of MSE$

Coefficient of determination (R²)



×

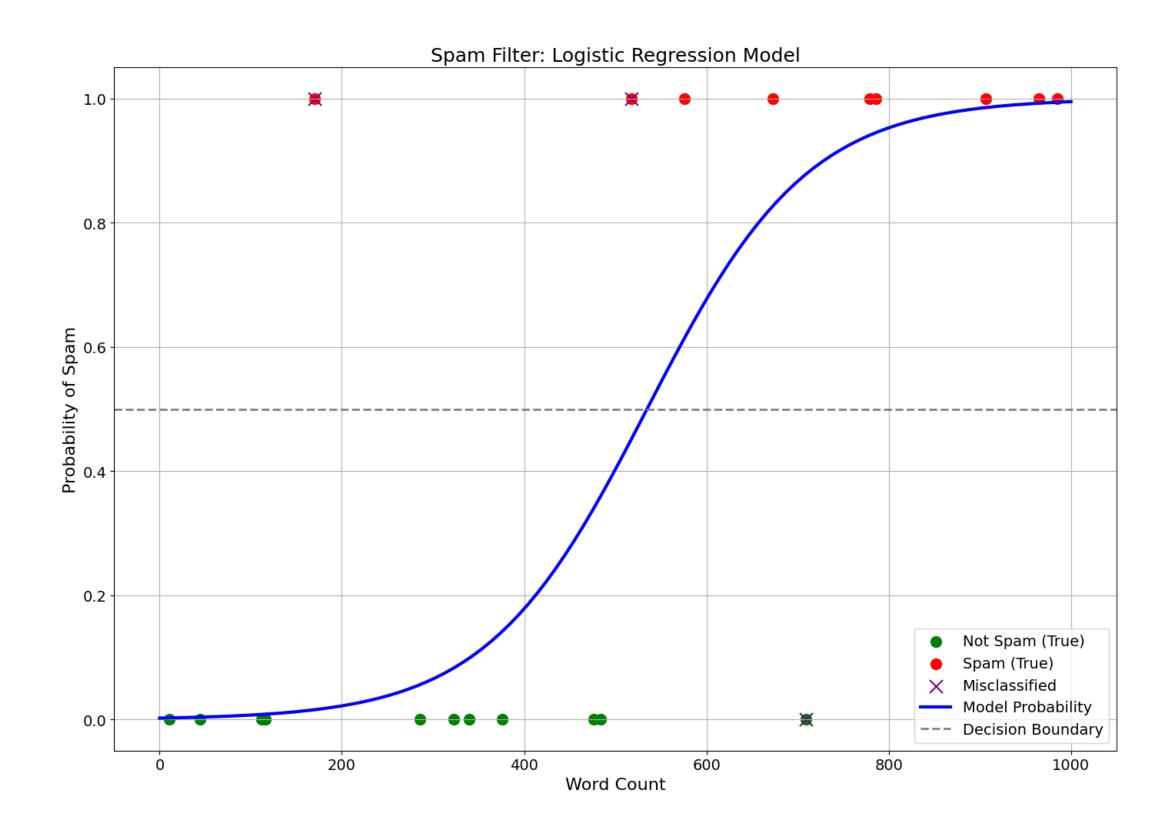
$$R^{2} = 1 - \frac{\sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}}{\sum_{i=1}^{m} (y^{(i)} - \bar{y}^{(i)})^{2}}$$

Measures the proportion of variance that is explained by the model. In other words, it compares the fit of a model (red line) to that of a simple mean model (green line).

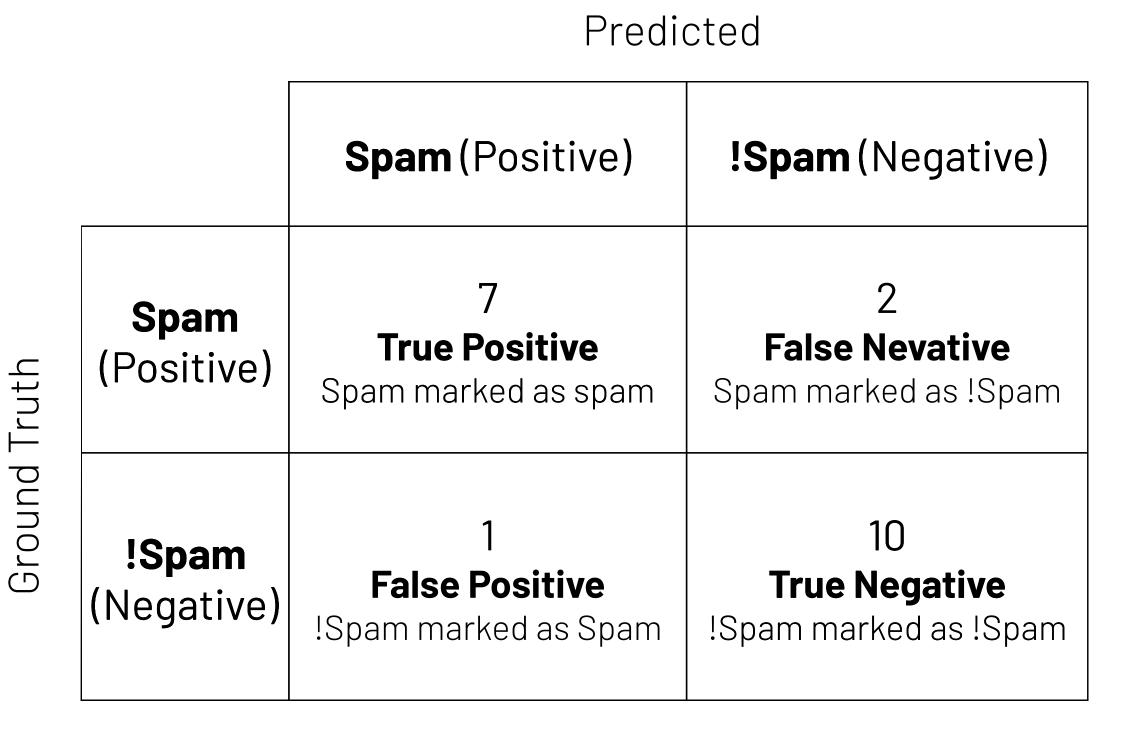
- Values range from 0 to 1
- The higher the R^2 , the better the model
- Scale-independent, allowing comparisons across different datasets

Classification Evaluation Metrics

Most metrics to evaluate the performance of classification models are based on the **confusion matrix**, which shows the number of true and false negatives and positives:



UFV



Confusion Matrix

Classification Evaluation Metrics

Based on the confusion matrix, we can compute the following performance metrics:

UFV

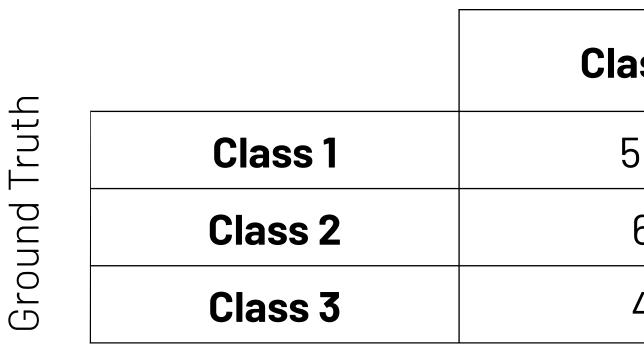
Metric	Formula	Computation	Result	Description
Accuracy	(TP + TN)/Total	(7 + 10) / 20	0.85 (85%)	Proportion of all emails correctly classified (both spam and non-spam)
Precision	TP/(TP+FP)	7 / (7 + 1)	0.875 (87.5%)	When the filter marks an email as spam, how often it is correct. Use when FP is high cost
Recall	TP/(TP+FN)	7 / (7 + 2)	0.778 (77.8%)	Proportion of actual spam emails that were correctly identified. Use when FN is high cost
F1 Score	2 * (Precision * Recall) / (Precision + Recall)	2 *(0.875 * 0.778)/ (0.875 + 0.778)	0.824 (82.4%)	Harmonic mean of precision and recall, providing a balanced measure

Predicted

		Spam	!Spam
Ground Iruth	Spam	7 TP	2 FN
	!Spam	1 FP	10 TN

Multiclass Classification Evaluation Metrics

Accuracy, Precision, Recall and F1-scores can also be used in multiclass problems:



- Accuracy: (TP1+TP2+TP3) / Total = (50+80+35) / 200 = 0.825(82.5%)
- ▶ **Precision**: (P1 + P2 + P3)/3 = (50/60 + 80/96 + 35/44)/3 = 0.845(84.5%)
- ► **Recall**: (R1 + R2 + R3) / 3 = (50 + 80 + 35) / 200 = 0.822(82.2%)
- ► F1-scores: 2 * (Macro-Precision * Macro-Recall) / (Macro-Precision + Macro-Recall)

UFV

iss 1	Class 2	Class 3
50	10	5
6	80	4
4	6	35

Predicted

Next Lecture

L8: Regularization & Normalization Techniques to reduce overfitting an

Techniques to reduce overfitting and improve model's performance

