L5: Multilayer Perceptron

Deep Learning

1

Logistics

Announcements

- ‣ PA1: Logistic Regression is out!
- ‣ There is a holiday next week!

Last Lecture

- ‣ Linear Regression with Multiple Variables
- ‣ Vectorization
- ‣ Logistic Regression
	- ‣ Sigmoid/Logistic Function
	- ▶ Binary Cross-Entropy Loss
	- ‣ Gradient Descent for Logistic Regression

Lecture Outline

- ‣ Linearly Separable Problems
- ‣ The Perceptron
- ‣ Linear Models as a Neuron
- ‣ Non-linearly Separable Problems
- ‣ Multilayer Perceptron
	- ‣ Forward Pass
	- ‣ Vectorization

- ‣ Activation Functions
- ‣ Categorical Cross-Entropy Loss

Linearly Separable Problems

4

The Perceptron: the first trainable neuron

JFV

$$
h(\mathbf{x}) = sgn(\mathbf{w} \cdot \mathbf{x} + b) \quad \mathbf{w} = [-0.7, 1] \quad b = 25
$$

\n
$$
sgn(z) = \begin{cases} +1, & z \ge 0 \\ -1, & z < 0 \end{cases}
$$

\n
$$
\mathbf{x}^{(1)} = [50, 10]
$$

\n
$$
h(\mathbf{x}^{(1)}) = sgn(-0.7 \cdot 51 + 1 \cdot 8 + 25) = sgn(-2.7) = -1
$$

\n
$$
\mathbf{x}^{(2)} = [10, 30]
$$

\n
$$
h(\mathbf{x}^{(2)}) = sgn(-0.7 \cdot 10 + 1 \cdot 30 + 25) = sgn(48) = 1
$$

 \blacktriangleright The Perceptron is not trained with Gradient Descent because the sgn function is not differentiable. Instead, it uses a simple update rule based on misclassifications.

An Artificial Neuron

A **Neuron** is a computational unit composed of:

- 1. A linear combination of inputs \mathbf{x} and weights \mathbf{w} : $z = \mathbf{w} \cdot \mathbf{x} + b$
-

- ‣ Linear Regression: *g*(*z*) = *z*
- ‣ Logistic Regression: *g*(*z*) = 1 $(1 + e^{-z})$ 1, $z \ge 0$
- \blacktriangleright Perceptron: $g(z) = \begin{cases}$ $-1, z < 0$

Linear models activation functions:

Non-linearly Separable Problems

Neural Networks learn new representations $\mathbf{a} = \begin{bmatrix} 1 & 0 \ a_2 \end{bmatrix}$ from inputs data $\mathbf{x} = \begin{bmatrix} 1 & 0 \ x_2 \end{bmatrix}$, called **latent representations**, a_2 from inputs data $\mathbf{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ *x*1 x_2

that can turn a non-linearly separable problem into linearly separable! *a*1

Forward Pass
\nFor a single input
$$
\mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}
$$

\n $a_1 = g^{[1]}(w_{11}^{[1]}x_1 + w_{21}^{[1]}x_2 + b_1^{[1]}) \le a_2 = g^{[1]}(w_{12}^{[1]}x_1 + w_{22}^{[1]}x_2 + b_2^{[1]}) \le a^{[1]} = \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} = g^{[1]}(w_{11}^{[1]}x_1 + w_{21}^{[1]}x_2 + b_1^{[1]})$
\n $= g^{[1]}(w_{11}^{[1]} w_{21}^{[1]} w_{22}^{[1]} w_{22}^{[1]} + b_2^{[1]}) = g^{[1]}(w^{[1]}\mathbf{x} \cdot \hat{y}) = g^{[2]}(w_{11}^{[2]}a_1 + w_{21}^{[2]}a_2 + b_1^{[2]}) \le a_2 = a^{[2]}(w_{11}^{[2]}a_1 + b_1^{[2]}a_2 + b_1^{[2]}) \le a_2 = a^{[2]}(w_{11}^{[2]}a_1 + b_2^{[2]}a_2 + b_1^{[2]}) \le a_2 = a^{[2]}(w_{11}^{[2]}a_1$

$$
\hat{y} = g^{[2]}([w_{11}^{[2]} \quad w_{21}^{[2]}] \begin{bmatrix} a_1 \\ a_2 \end{bmatrix} + b_1^{[2]} = g^{[2]}(W^{[2]}\mathbf{a} + b_1^{[2]})
$$

Forward Pass

UFV

For a dataset *X* with *m* examples

$$
X = \begin{bmatrix} x_1^{(1)} & x_1^{(2)} & \cdots & x_1^{(m)} \\ x_2^{(1)} & x_2^{(2)} & \cdots & x_2^{(m)} \end{bmatrix}
$$

\n
$$
W^{[1]} = \begin{bmatrix} w_1^{[1]} & w_2^{[1]} \\ w_1^{[1]} & w_2^{[1]} \end{bmatrix} \quad \mathbf{b}^{[1]} = \begin{bmatrix} b_1^{[1]} \\ b_2^{[1]} \end{bmatrix}
$$

\n
$$
A^{[1]} = g^{[1]}(W^{[1]}X + \mathbf{b}^{[1]}) = g^{[1]}(\begin{bmatrix} a_1^{(1)} & a_1^{(2)} & \cdots & a_1^{(m)} \\ a_2^{(1)} & a_2^{(2)} & \cdots & a_2^{(m)} \end{bmatrix}
$$

\n
$$
W^{[2]} = [w_1^{[2]} \quad w_2^{[2]}]
$$

\n
$$
\hat{\mathbf{y}} = g^{[2]}(W^{[2]}A^{[1]} + b^{[2]}) = [\hat{y}^{(1)} \quad \hat{y}^{(2)} \quad \cdots \quad \hat{y}^{(m)}]
$$

Hypothesis Space

11

Hypothesis Space *H*

UFV

$$
Z^{[1]} = W^{[1]}X + \mathbf{b}^{[1]}
$$

\n
$$
A^{[1]} = g^{[1]}(Z^{[1]})
$$

\n
$$
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
$$

\n
$$
\hat{\mathbf{y}} = g^{[2]}(Z^{[2]})
$$

$$
\hat{\mathbf{y}} = h(\mathbf{x}) = g^{[2]}(W^{[2]} \cdot g^{[2]}(W^{[1]}X + \mathbf{b}^{[1]}) + b^{[2]}
$$

$$
h(\mathbf{x}) = g^{[2]}(W^{[2]} \cdot h^{[1]}(X) + b^{[2]})
$$

MLPs learn composite functions!

Activation Functions

Why do we need non-linear activation functions?

$$
\hat{\mathbf{y}} = h(\mathbf{x}) = g^{[2]}(W^{[2]} \cdot g^{[1]}(W^{[1]} \cdot \mathbf{x} + \mathbf{b}^{[1]}) + b^{[2]})
$$

\n
$$
h(\mathbf{x}) = W^{[2]} \cdot (W^{[1]} \cdot \mathbf{x} + \mathbf{b}^{[1]}) + b^{[2]}
$$

\n
$$
h(\mathbf{x}) = (W^{[2]} \cdot W^{[1]}) \cdot \mathbf{x} + (W^{[2]} \cdot \mathbf{b}^{[1]}) + b^{[2]}
$$

\n
$$
W'
$$

 $h(x) = W' \cdot x + b'$

UFV

$$
Z^{[1]} = W^{[1]}X + \mathbf{b}^{[1]}
$$

$$
A^{[1]} = g^{[1]}(Z^{[1]})
$$

$$
Z^{[2]} = W^{[2]}A^{[1]} + b^{[2]}
$$

$$
\hat{\mathbf{y}} = g^{[2]}(Z^{[2]})
$$

If we use linear activation functions, our hypothesis **will be linear!**

Initializating MLP weights

In Neural Networks with at least 1 hidden layer (MLPs), we need to initialize the weights with random varibales close to zero.

$$
W^{[1]} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix} \quad b^{[1]} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}
$$

$$
W^{[2]} = \begin{bmatrix} 0 & 0 \end{bmatrix} \quad b^{[2]} = 0
$$

$$
a_1^{(i)} = a_2^{(i)} \longrightarrow dZ_1^{[1]} = dZ_2^{[1]}
$$

$$
dW = \begin{bmatrix} u & u \\ u & u \end{bmatrix}
$$
 In reg
gradient of the equation $Q = \begin{bmatrix} u & u \\ u & u \end{bmatrix}$

If we initialize the weights with zeros, all neurons in the hidden layers will be equal!

Deep Neural Networks

Logistic/Linear Regression

NN with 1 layer (shallow)

*x*1 *x*2

1 hidden layer NN with 2 layers (shallow)

2 hidden layers

NN with 3 layers (shallow)

ŷ

5 hidden layers

NN with 6 layers (deep)

Deep Neural Networks Forward Pass

NN with *L* layers

 $[0]$ $[1]$ $[2]$ $[L-2]$ $[L-1]$ $[L]$

$$
\mathbf{z}^{[l]} = W^{[l]} \mathbf{a}^{[l-i]} + \mathbf{b}^{[l]}
$$

$$
\mathbf{a}^{[l]} = g^{[l]}(\mathbf{z}^{[l]})
$$

General formulation:

 $\mathbf{z}^{[1]} = W^{[1]} \mathbf{x} + \mathbf{b}^{[1]}$ $\mathbf{a}^{[1]} = g^{[1]}(\mathbf{z}^{[1]})$ $z^{[2]} = W^{[2]}a^{[1]} + b^{[2]}$ $\mathbf{a}^{[2]} = g^{[2]}(\mathbf{z}^{[2]})$ $\mathbf{z}^{[L]} = W^{[L]}\mathbf{a}^{[L-1]} + b^{[L]}$ $\hat{y} = g^{[L]}(\mathbf{z}^{[L]})$ **For a single example x:**

 $Z^{[l]} = W^{[l]}A^{[l-1]} + \mathbf{b}^{[l]}$ $A^{[l]} = g^{[l]}(Z^{[l]})$ **Vectorized** $A^{[0]} = X$

$$
A^{[L]} = \hat{Y}
$$

Output Layer with a Single Neuron

Binary Classification Sidmoid Activation Function $\hat{y} = P(y = 1 | \mathbf{x}) = 0.3$

Linear Activation Function

For **Regression and Binary Classification** problems, our Neural Network will have a single

neuron in the output layer.

Output Layer with Multiple Neurons

For **multiclass classification problems**, the number of neurons in the output layer is equal to the number of classes in the problem and the activation function is called **softmax**.

 $Z^{[2]} =$ $g(z) = -$

Multiclass Classification Softmax Activation Function

$$
\frac{e^{z}}{\sum_{j=1}^{C} e_{j}^{z}}
$$
\n
$$
\begin{bmatrix} 5 \\ 2 \\ -1 \end{bmatrix}
$$
\n
$$
e^{z} = \begin{bmatrix} e^{5} \\ e^{2} \\ e^{-1} \end{bmatrix}
$$
\n
$$
\hat{y}^{(i)} = \begin{bmatrix} 0.531 \\ 0.238 \\ 0.229 \end{bmatrix}
$$
\nClass 1\nClass 2\n
$$
\sum_{j=i}^{C} e_{i}^{z} = 156.17
$$
\nProbability\nDistribution

Categorial Cross-Entropy Loss Function

For multiclass classification problems, we use the Categorical Cross-Entropy Loss Function, which is a generalization of the BCE Loss:

Binary Cross-Entropy

$$
L(h) = -\frac{1}{m} \sum_{i=1}^{m} \left[y_i \log(\hat{y}^{(i)}) + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}) \right]
$$

- \rightarrow $y^{(i)}$: true label (0 or 1) for example (i)
- $\hat{y}^{(i)}$: predicted probability for example (i) **Ñ**
- \rightarrow $y_c^{(i)}$: true label of class c for example (i)
- $\rightarrow \hat{y}_c^{(i)}$: predicted probability of class c for example (i) ̂

- \blacktriangleright True label $y^{(i)} = 1$
- \blacktriangleright Predicted probability $\hat{y}^{(i)} = 0.8$ ̂

 $L = -[1 * log(0.8) + (1 – 1) * log(1 – 0.8)]$ $= - [log(0.8)] \approx 0.223$

Categorical Cross-Entropy

$$
L(h) = -\frac{1}{m} \sum_{i=1}^{m} \sum_{c=1}^{C} y_c^{(i)} \log(\hat{y}_c^{(i)})
$$

Example:

UFV

Example:

- \blacktriangleright True labels: $y^{(i)} = [0, 1, 0]$
- \blacktriangleright Predicted probabilities: $\hat{y}^{(i)} = [0.1, 0.7, 0.2]$

$$
L = -[0 * log(0.1) + 1 * log(0.7) + 0 * log(0.2)]
$$

= -[log(0.7)] ≈ 0.357

Next Lecture

L6: Backpropagation

Algorithm to eficiently compute the gradients of a loss function with respect to the MLP weights

