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Logistics

Announcements 
‣ PA1: Logistic Regression is out!  
‣ There is a holiday next week! 

Last Lecture 
‣ Linear Regression with Multiple Variables 

‣ Vectorization 

‣ Logistic Regression 

‣ Sigmoid/Logistic Function 

‣ Binary Cross-Entropy Loss 

‣ Gradient Descent for Logistic Regression
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Lecture Outline

‣ Linearly Separable Problems 

‣ The Perceptron 

‣ Linear Models as a Neuron 

‣ Non-linearly Separable Problems 

‣ Multilayer Perceptron 

‣ Forward Pass  

‣ Vectorization 

‣ Activation Functions 

‣ Categorical Cross-Entropy Loss
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Linearly Separable Problems
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The Perceptron: the first trainable neuron
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w

h(x) = sgn(w ⋅ x + b) w = [−0.7,1] b = 25

h(x(1)) = sgn(−0.7 ⋅ 51 + 1 ⋅ 8 + 25) = sgn(−2.7) = − 1

sgn(z) = {+1, z ≥ 0
−1, z < 0

x(1) = [50,10]

h(x(2)) = sgn(−0.7 ⋅ 10 + 1 ⋅ 30 + 25) = sgn(48) = 1
x(2) = [10,30]

‣ The Perceptron is not trained with Gradient Descent because the  function is not 
differentiable. Instead, it uses a simple update rule based on misclassifications.

sgn



An Artificial Neuron

6

̂y

x1

z = w ⋅ x + b g(z)

Linear combination of 
inputs and weights

Activation Function

Input

Output

A Neuron is a computational unit composed of: 

1. A linear combination of inputs  and weights :
 

2. A  typically non-linear activation function 

x w
z = w ⋅ x + b

g(z)x2

xd

Linear models activation functions: 

‣ Linear Regression:  

‣ Logistic Regression:  

‣ Perceptron: 

g(z) = z

g(z) = 1
(1 + e−z)

g(z) = { 1, z ≥ 0
−1, z < 0



Non-linearly Separable Problems
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1 0

0 1 0

1 0 1

x1x2

f(x1, x2) = x1 XOR x2

x1

x2

10

1 ̂y

x1

x2

!AND

OR

AND

Neural Networks learn new representations  from inputs data , called latent representations, 

that can turn a non-linearly separable problem into linearly separable!

a = [a1
a2] x = [x1

x2]

a1

a2



Multilayer Perceptron (MLP)
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̂y

x1

x2

x w ⋅ x + b g a

Linear combination of 
inputs and weights

Activation Function

Input Output 
(Activation)

Architecture

Input  
Layer

Hidden 
Layer

Ouput  
Layer



Layer [2]Layer [1]

Neuron 1

Forward Pass
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̂y

x1

x2

w11

w12

w21

w22

a1 = g[1](w[1]
11 x1 + w[1]

21 x2 + b[1]
1 )

Neuron 2

Neuron 1a1

a2

a2 = g[1](w[1]
12 x1 + w[1]

22 x2 + b[1]
2 )

a[1] = [a1
a2] = g[1]([w[1]

11 x1 + w[1]
21 x2 + b[1]

1
w[1]

11 x1 + w[1]
22 x2 + b[1]

2 ])

= g[1]([w[1]
11 w[1]

21
w[1]

11 w[1]
22 ] [x1

x2] + [b[1]
1

b[1]
2 ]) = g[1](W[1]x + b[1])

̂y = g[2](w[2]
11 a1 + w[2]

21 a2 + b[2]
1 )

̂y = g[2]([w[2]
11 w[2]

21 ] [a1
a2] + b[2]

1 ) = g[2](W[2]a + b[2]
1 )

For a single input x x = [x1
x2]



Layer [2]Layer [1]

Neuron 1

Forward Pass
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ŷ

x(i)
1

x(i)
2

w11

w12

w21

w22

a(i)
1

a(i)
2

X = [x(1)
1 x(2)

1 . . . x(m)
1

x(1)
2 x(2)

2 . . . x(m)
2 ]

For a dataset  with  examplesX m

ŷ = g[2](W[2]A[1] + b[2]) = [ ̂y(1) ̂y(2) . . . ̂y(m)]

Neuron 2

Example (i)

b[1] = [b[1]
1

b[1]
2 ]

Neuron 1

W[1] = [w[1]
11 w[1]

21
w[1]

12 w[1]
22 ]

W[2] = [w[2]
11 w[2]

21 ]

A[1] = g[1](W[1]X + b[1]) = g[1]([a(1)
1 a(2)

1 . . . a(m)
1

a(1)
2 a(2)

2 . . . a(m)
2 ])



Hypothesis Space
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Hypothesis Space  H
Z[1] = W[1]X + b[1]

A[1] = g[1](Z[1])
Z[2] = W[2]A[1] + b[2]

ŷ = g[2](Z[2])

ŷ = h(x) = g[2](W[2] ⋅ g[2](W[1]X + b[1]) + b[2]

h(x) = g[2](W[2] ⋅ h[1](X) + b[2])

MLPs learn composite functions!
W[1], b[1] W[2], b[2]

Layer [2]Layer  [1]

ŷX A[1]



Activation Functions
Logistic (sigmoid)
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0

0.5

1 g(z) = 1
(1 + e−z)

z

g′ (z) = g(z)(1 − g(z))

1 g(z) = ez − e−z

ez + e−z

z−1

g′ (z) = 1 − g(z)2

Hyperbolic Tangent

0

g(z) = max(0, z)

z

g′ (z) =
1 if z > 0
0 if z < 0
∄, if z = 0

Rectified Linear Unit (ReLU)

Leaky ReLU

0

g(z) = max(0.01z, z)

z

g′ (z) =
1 if z > 0
0.01 if z < 0
∄, if z = 0



Why do we need non-linear activation functions?
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ŷ = h(x) = g[2](W[2] ⋅ g[1](W[1] ⋅ x + b[1]) + b[2])
h(x) = W[2] ⋅ (W[1] ⋅ x + b[1]) + b[2]

h(x) = (W[2] ⋅ W[1]) ⋅ x + (W[2] ⋅ b[1]) + b[2]

h(x) = W′ ⋅ x + b′ 

W′ b′ 

Z[1] = W[1]X + b[1]

A[1] = g[1](Z[1])
Z[2] = W[2]A[1] + b[2]

ŷ = g[2](Z[2])

W[1], b[1] W[2], b[2]

Camada [2]Camada [1]

ŷX A[1]

If we use linear activation functions, our hypothesis will be linear! 



Initializating MLP weights 
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̂y(i)

x(i)
1

x(i)
2

w11

w21

w12

w22

a(i)
1

a(i)
2

W[1] = [0 0
0 0] b[1] = [0

0]

a(i)
1 = a(i)

2 dZ[1]
1 = dZ[1]

2

In Neural Networks with at least 1 hidden layer (MLPs), we need to initialize the weights with 
random varibales close to zero.

W[2] = [0 0]

If we initialize the weights with zeros, all 
neurons in the hidden layers will be equal! 

dW = [u u
u u]

0

0.5

1

z

In regions close to zero the 
gradient is greater!

b[2] = 0



Deep Neural Networks

15

Logistic/Linear Regression

̂y
x1

x2

NN with 1 layer (shallow)

̂y

x1

x2

1 hidden layer
NN with 2 layers (shallow)

 2 hidden layers

̂y

x1

x2

x3

x4

NN with 3 layers (shallow)

̂y

x4

x3

x2

x1

5 hidden layers
NN with 6 layers (deep)



Deep Neural Networks Forward Pass
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̂y

xd

x2

x1

NN with  layersL

z[l] = W[l]a[l−i] + b[l]

a[l] = g[l](z[l])

General formulation:

. . .

[0] [1] [2] [L][L-1][L-2]

Z[l] = W[l]A[l−1] + b[l]

A[l] = g[l](Z[l])

Vectorized

A[0] = X
A[L] = ̂Y

z[1] = W[1]x + b[1]

a[1] = g[1](z[1])
z[2] = W[2]a[1] + b[2]

a[2] = g[2](z[2])
. . .
z[L] = W[L]a[L−1] + b[L]

̂y = g[L](z[L])

For a single example  :x



Output Layer with a Single Neuron
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0

0.5

1

g(z) = 1
(1 + e−z)

z

0

g(z) = z
z

Regression 
Linear Activation Function 
̂y = 418.7

Binary Classification 
Sidmoid Activation Function 
̂y = P(y = 1 |x) = 0.3

̂y

x1

x2

For Regression and Binary Classification problems, our Neural Network will have a single 
neuron in the output layer.



Output Layer with Multiple Neurons
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For multiclass classification problems, the number of neurons in the output layer is equal to 
the number of classes in the problem and the activation function is called softmax.

̂y1x1

x2

̂y2

̂y3

Multiclass Classification 
Softmax Activation Function

Z[2] = [
5
2

−1] ez =
e5

e2

e−1

C

∑
j=i

ez
i = 156.17

̂y(i) =
0.531
0.238
0.229

Class 1
Class 2
Class 3

Probability 
Distribution 

g(z) = ez

∑C
j=1 ez

j



Categorial Cross-Entropy Loss Function
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For multiclass classification problems, we use the Categorical Cross-Entropy Loss Function, 
which is a generalization of the BCE Loss:

Binary Cross-Entropy

L(h) = − 1
m

m

∑
i=1

[yi log( ̂y(i)) + (1 − y(i))log(1 − ̂y(i))]

‣ : true label (0 or 1) for example  
‣ : predicted probability for example 

y(i) (i)
̂y(i) (i)

Categorical Cross-Entropy

L(h) = − 1
m

m

∑
i=1

C

∑
c=1

y(i)
c log( ̂y(i)

c )

‣ :  true label of class  for example  
‣ : predicted probability of class  for example 

y(i)
c c (i)
̂y(i)
c c (i)

Example: 
‣ True label  
‣ Predicted probability  

y(i) = 1
̂y(i) = 0.8

L = − [1 * log(0.8) + (1 − 1) * log(1 − 0.8)]
= − [log(0.8)] ≈ 0.223

Example: 
‣ True labels:   
‣ Predicted probabilities:  

y(i) = [0,1,0]
̂y(i) = [0.1,0.7,0.2]

L = − [0 * log(0.1) + 1 * log(0.7) + 0 * log(0.2)]
= − [log(0.7)] ≈ 0.357



Next Lecture

L6: Backpropagation 

Algorithm to eficiently compute the gradients of a loss function with 
respect to the MLP weights    
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