
INF721

L5: Multilayer Perceptron

Deep Learning

2024/2

1

Logistics

Announcements
‣ PA1: Logistic Regression is out!
‣ There is a holiday next week!

Last Lecture
‣ Linear Regression with Multiple Variables

‣ Vectorization

‣ Logistic Regression

‣ Sigmoid/Logistic Function

‣ Binary Cross-Entropy Loss

‣ Gradient Descent for Logistic Regression

2

Lecture Outline

‣ Linearly Separable Problems

‣ The Perceptron

‣ Linear Models as a Neuron

‣ Non-linearly Separable Problems

‣ Multilayer Perceptron

‣ Forward Pass

‣ Vectorization

‣ Activation Functions

‣ Categorical Cross-Entropy Loss

3

Linearly Separable Problems

4

The Perceptron: the first trainable neuron

5

w

h(x) = sgn(w ⋅ x + b) w = [−0.7,1] b = 25

h(x(1)) = sgn(−0.7 ⋅ 51 + 1 ⋅ 8 + 25) = sgn(−2.7) = − 1

sgn(z) = {+1, z ≥ 0
−1, z < 0

x(1) = [50,10]

h(x(2)) = sgn(−0.7 ⋅ 10 + 1 ⋅ 30 + 25) = sgn(48) = 1
x(2) = [10,30]

‣ The Perceptron is not trained with Gradient Descent because the function is not
differentiable. Instead, it uses a simple update rule based on misclassifications.

sgn

An Artificial Neuron

6

̂y

x1

z = w ⋅ x + b g(z)

Linear combination of
inputs and weights

Activation Function

Input

Output

A Neuron is a computational unit composed of:

1. A linear combination of inputs and weights :

2. A typically non-linear activation function

x w
z = w ⋅ x + b

g(z)x2

xd

Linear models activation functions:

‣ Linear Regression:

‣ Logistic Regression:

‣ Perceptron:

g(z) = z

g(z) = 1
(1 + e−z)

g(z) = { 1, z ≥ 0
−1, z < 0

Non-linearly Separable Problems

7

1 0

0 1 0

1 0 1

x1x2

f(x1, x2) = x1 XOR x2

x1

x2

10

1 ̂y

x1

x2

!AND

OR

AND

Neural Networks learn new representations from inputs data , called latent representations,

that can turn a non-linearly separable problem into linearly separable!

a = [a1
a2] x = [x1

x2]

a1

a2

Multilayer Perceptron (MLP)

8

̂y

x1

x2

x w ⋅ x + b g a

Linear combination of
inputs and weights

Activation Function

Input Output
(Activation)

Architecture

Input
Layer

Hidden
Layer

Ouput
Layer

Layer [2]Layer [1]

Neuron 1

Forward Pass

9

̂y

x1

x2

w11

w12

w21

w22

a1 = g[1](w[1]
11 x1 + w[1]

21 x2 + b[1]
1)

Neuron 2

Neuron 1a1

a2

a2 = g[1](w[1]
12 x1 + w[1]

22 x2 + b[1]
2)

a[1] = [a1
a2] = g[1]([w[1]

11 x1 + w[1]
21 x2 + b[1]

1
w[1]

11 x1 + w[1]
22 x2 + b[1]

2])

= g[1]([w[1]
11 w[1]

21
w[1]

11 w[1]
22] [x1

x2] + [b[1]
1

b[1]
2]) = g[1](W[1]x + b[1])

̂y = g[2](w[2]
11 a1 + w[2]

21 a2 + b[2]
1)

̂y = g[2]([w[2]
11 w[2]

21] [a1
a2] + b[2]

1) = g[2](W[2]a + b[2]
1)

For a single input x x = [x1
x2]

Layer [2]Layer [1]

Neuron 1

Forward Pass

10

ŷ

x(i)
1

x(i)
2

w11

w12

w21

w22

a(i)
1

a(i)
2

X = [x(1)
1 x(2)

1 . . . x(m)
1

x(1)
2 x(2)

2 . . . x(m)
2]

For a dataset with examplesX m

ŷ = g[2](W[2]A[1] + b[2]) = [̂y(1) ̂y(2) . . . ̂y(m)]

Neuron 2

Example (i)

b[1] = [b[1]
1

b[1]
2]

Neuron 1

W[1] = [w[1]
11 w[1]

21
w[1]

12 w[1]
22]

W[2] = [w[2]
11 w[2]

21]

A[1] = g[1](W[1]X + b[1]) = g[1]([a(1)
1 a(2)

1 . . . a(m)
1

a(1)
2 a(2)

2 . . . a(m)
2])

Hypothesis Space

11

Hypothesis Space H
Z[1] = W[1]X + b[1]

A[1] = g[1](Z[1])
Z[2] = W[2]A[1] + b[2]

ŷ = g[2](Z[2])

ŷ = h(x) = g[2](W[2] ⋅ g[2](W[1]X + b[1]) + b[2]

h(x) = g[2](W[2] ⋅ h[1](X) + b[2])

MLPs learn composite functions!
W[1], b[1] W[2], b[2]

Layer [2]Layer [1]

ŷX A[1]

Activation Functions
Logistic (sigmoid)

12

0

0.5

1 g(z) = 1
(1 + e−z)

z

g′ (z) = g(z)(1 − g(z))

1 g(z) = ez − e−z

ez + e−z

z−1

g′ (z) = 1 − g(z)2

Hyperbolic Tangent

0

g(z) = max(0, z)

z

g′ (z) =
1 if z > 0
0 if z < 0
∄, if z = 0

Rectified Linear Unit (ReLU)

Leaky ReLU

0

g(z) = max(0.01z, z)

z

g′ (z) =
1 if z > 0
0.01 if z < 0
∄, if z = 0

Why do we need non-linear activation functions?

13

ŷ = h(x) = g[2](W[2] ⋅ g[1](W[1] ⋅ x + b[1]) + b[2])
h(x) = W[2] ⋅ (W[1] ⋅ x + b[1]) + b[2]

h(x) = (W[2] ⋅ W[1]) ⋅ x + (W[2] ⋅ b[1]) + b[2]

h(x) = W′ ⋅ x + b′

W′ b′

Z[1] = W[1]X + b[1]

A[1] = g[1](Z[1])
Z[2] = W[2]A[1] + b[2]

ŷ = g[2](Z[2])

W[1], b[1] W[2], b[2]

Camada [2]Camada [1]

ŷX A[1]

If we use linear activation functions, our hypothesis will be linear!

Initializating MLP weights

14

̂y(i)

x(i)
1

x(i)
2

w11

w21

w12

w22

a(i)
1

a(i)
2

W[1] = [0 0
0 0] b[1] = [0

0]

a(i)
1 = a(i)

2 dZ[1]
1 = dZ[1]

2

In Neural Networks with at least 1 hidden layer (MLPs), we need to initialize the weights with
random varibales close to zero.

W[2] = [0 0]

If we initialize the weights with zeros, all
neurons in the hidden layers will be equal!

dW = [u u
u u]

0

0.5

1

z

In regions close to zero the
gradient is greater!

b[2] = 0

Deep Neural Networks

15

Logistic/Linear Regression

̂y
x1

x2

NN with 1 layer (shallow)

̂y

x1

x2

1 hidden layer
NN with 2 layers (shallow)

 2 hidden layers

̂y

x1

x2

x3

x4

NN with 3 layers (shallow)

̂y

x4

x3

x2

x1

5 hidden layers
NN with 6 layers (deep)

Deep Neural Networks Forward Pass

16

̂y

xd

x2

x1

NN with layersL

z[l] = W[l]a[l−i] + b[l]

a[l] = g[l](z[l])

General formulation:

. . .

[0] [1] [2] [L][L-1][L-2]

Z[l] = W[l]A[l−1] + b[l]

A[l] = g[l](Z[l])

Vectorized

A[0] = X
A[L] = ̂Y

z[1] = W[1]x + b[1]

a[1] = g[1](z[1])
z[2] = W[2]a[1] + b[2]

a[2] = g[2](z[2])
. . .
z[L] = W[L]a[L−1] + b[L]

̂y = g[L](z[L])

For a single example :x

Output Layer with a Single Neuron

17

0

0.5

1

g(z) = 1
(1 + e−z)

z

0

g(z) = z
z

Regression
Linear Activation Function
̂y = 418.7

Binary Classification
Sidmoid Activation Function
̂y = P(y = 1 |x) = 0.3

̂y

x1

x2

For Regression and Binary Classification problems, our Neural Network will have a single
neuron in the output layer.

Output Layer with Multiple Neurons

18

For multiclass classification problems, the number of neurons in the output layer is equal to
the number of classes in the problem and the activation function is called softmax.

̂y1x1

x2

̂y2

̂y3

Multiclass Classification
Softmax Activation Function

Z[2] = [
5
2

−1] ez =
e5

e2

e−1

C

∑
j=i

ez
i = 156.17

̂y(i) =
0.531
0.238
0.229

Class 1
Class 2
Class 3

Probability
Distribution

g(z) = ez

∑C
j=1 ez

j

Categorial Cross-Entropy Loss Function

19

For multiclass classification problems, we use the Categorical Cross-Entropy Loss Function,
which is a generalization of the BCE Loss:

Binary Cross-Entropy

L(h) = − 1
m

m

∑
i=1

[yi log(̂y(i)) + (1 − y(i))log(1 − ̂y(i))]

‣ : true label (0 or 1) for example
‣ : predicted probability for example

y(i) (i)
̂y(i) (i)

Categorical Cross-Entropy

L(h) = − 1
m

m

∑
i=1

C

∑
c=1

y(i)
c log(̂y(i)

c)

‣ : true label of class for example
‣ : predicted probability of class for example

y(i)
c c (i)
̂y(i)
c c (i)

Example:
‣ True label
‣ Predicted probability

y(i) = 1
̂y(i) = 0.8

L = − [1 * log(0.8) + (1 − 1) * log(1 − 0.8)]
= − [log(0.8)] ≈ 0.223

Example:
‣ True labels:
‣ Predicted probabilities:

y(i) = [0,1,0]
̂y(i) = [0.1,0.7,0.2]

L = − [0 * log(0.1) + 1 * log(0.7) + 0 * log(0.2)]
= − [log(0.7)] ≈ 0.357

Next Lecture

L6: Backpropagation

Algorithm to eficiently compute the gradients of a loss function with
respect to the MLP weights

20

