

Deep Learning

L4: Logistic Regression

1

Logistics

Announcements

PA1: Logistic Regression will be out by the end of today.

Last Lecture

- Univariate Linear regression
 - Hypothesis space
 - MSE loss function
- Gradient Descent

Lecture Outline

- Linear regression with multiple features
- Vectorization
- Logistic Regression
 - Hypothesis space
 - Binary Cross-Entropy (BCE) Loss Function
 - Gradients

Univariate Linear Regression

Dataset D		
x (size m)	y (Price in 1000's USD)	
55	144	
61	200	
84	293	
95	196	
•••	• • •	

• Univariate Linear Regression h(x) = wx + b

4

Multiple Linear Regression

Dataset D				
X1 (size m)	X ₂ (# of beds)	X3 (age in years)	y (price in 1000's	
152	4	24	1550	
229	3	35	2286	
84	1	10	293	
95	3	14	196	
• • •	• • •	• • •	• • •	

Univariate Linear Regression USD) $h_{w,b}(x) = wx + b$ Generaly (for d input features) $h_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \ldots + \mathbf{w}_d \mathbf{x}_d + b$ Example: $h_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{w}_3 \mathbf{x}_3 + b$ $h_{\mathbf{w},b}(\mathbf{x}) = 0.1\mathbf{x}_1 + 4\mathbf{x}_2 + -2\mathbf{x}_3 + 80$

size # of beds years base price

Dot Product Notation

- Multiple Linear Regression $h(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b$ \longrightarrow $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$
- $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_d]$ is a weight vector
- $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d]$ is an input vector
- ► *b* is a scalar (called bias)
- Dot product
 - $\mathbf{w} \cdot \mathbf{x} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \dots \mathbf{w}_d \mathbf{x}_d$

Dot product

Gradient Descent for Multiple Linear Regression

```
def optimize(X, y, lr, n_iter):
 # Init weights to zero
 w, b = np.zeros(len(X[0])), 0
 # Optimize weihts iteratively
  for t in range(n_iter):
   # Predict x labels with w and b
   y_hat = np_dot(X, w) + b
   # Compute gradients
   dw = np.dot(X.T, (y_hat - y)) / len(y)
   db = np.mean(y_hat - y)
   # Update weights
   w = w - lr * dw
   b = b - lr * db
  return w, b
```

UFV

Multiple Linear Regression

 $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$

Loss Function

 $L(h_{\mathbf{w},b}) = \frac{1}{2m} \sum_{i=1}^{m} (h_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2$

Gradient

∂L	$=\frac{1}{2} \sum_{i=1}^{m} (h_{i} (\mathbf{x}^{(i)}) - v^{(i)}) \mathbf{x}^{(i)}$
∂w_j	$= \frac{1}{m} \sum_{i=1}^{m} (h_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)}) \mathbf{x}_{j}^{(i)}$
∂L	$- \frac{1}{N} \frac{m}{(k + (x^{(i)}) + (i))}$
∂b	$= \frac{1}{m} \sum_{i=1}^{m} (h_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})$

Vectorization

Vectorization

Vectorization in ML programming is the process of optimizing code to perform operations on entire vectors or matrices at once, rather than using explicit loops.

Benefits:

- Significantly faster execution (takes advantage of SIMD instructions)
- More concise and readable code
- Better utilization of modern CPU/GPU architectures
- Improved scalability for large datasets

Vectorizing multiple linear regression

Without vectorization 😞

```
# Input features as a list
x = [152, 4, 24]
# Weights as a list
w = [0.1, 4.0, -2.0]
# Bias term as a float
b = 4
def model(x, w, b):
    y_hat = 0
    for i in range(len(x)):
        y hat += w[i] * x[I]
    return y_hat + b
```

UFV

Vectorization 😃

```
import numpy as np
# Input features as a vector
x = np.array([152, 4, 24])
# Weights as a vector
w = np.array([0.1, 4.0, -2.0])
# Bias term as a float
b = 4
def model(x, w, b):
    return np.dot(w, x) + b
```


Why vectorization speeds up ML code

Without vectorization 😞

```
def model(x, w, b):
    d = len(x)
    y_hat = 0
    for i in range(d):
        y_hat += w[i] * x[i]
```

```
return y_hat + b
```


Vectorization 😃

11

Vectorizing loss function (MSE)

Without vectorization 😞

```
# Labels as a list
y = [30, 70, 120]
# Predictions as a list
y_hat = [27, 92, 33]
def loss(y, y_hat):
    1 = 0
    m = len(y)
    for i in range(m):
        l += (y_hat[i] - y[i]) ** 2
    return l / (2 * m)
```


Vectorization 😃

import numpy as np

```
# Labels as a list
y = np.array([30, 70, 120])
```

```
# Predictions as a list
y_hat = np.array([27, 92, 33])
```

def loss(y, y_hat):
 return np.mean((y - y_hat) ** 2)

Vectorizing gradient descent

Without vectorization 😞

```
X = [[152, 4, 24], [229, 3, 35], [84, 1, 10]]
y = [1550, 2286, 293]
def optimize(X, y, n_iter, alpha):
  m = len(X), d = len(X[0])
  w = [0.0] * d
  b = 0 \cdot 0
  for i in range(n_iter):
    # Compute predictions
    # Compute gradients
    dw = [0.0] * d
    db = 0.0
    for i in range(m):
      for j in range(d):
        dw[j] += (y_hat[i] - y[i]) * X[i][j]
      db += (y_hat[i] - y[i])
    # Update weights and bias
```

UFV

Vectorization 😃

```
import numpy as np
X = np_array([[152, 4, 24]])
               [229, 3, 35],
               [84, 1, 10]]
y = np_array([1550, 2286, 293])
def optimize(X, y, n_iter, alpha):
    d = X.shape[1]
    w = np_zeros(d)
    b = 0 \cdot 0
    # Compute predictions
    # Compute gradients
    dw = np.dot(X.T, (y_hat - y)) / len(y)
    db = np_mean(y_hat - y)
    # Update weights and bias
```


to operate on these arrays efficiently.

```
# Create arrays
x = np_array([1, 2, 3, 4, 5])
y = np.array([2, 4, 6, 8, 10])
# Element-wise operations
z = x + y \# [3, 6, 9, 12, 15]
w = x * y \# [2, 8, 18, 32, 50]
# Matrix multiplication
A = np_array([[1, 2], [3, 4]])
B = np_array([[5, 6], [7, 8]])
C = np.dot(A, B) \# [[19, 22], [43, 50]]
```


NumPy (Numerical Python) is a library for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions

```
# Statistical operations
mean = np.mean(x) \# 3.0
std = np_std(x) # 1.41421356...
# Reshaping
D = np_arange(6) \# [0, 1, 2, 3, 4, 5]
E = D.reshape(2, 3) # [[0, 1, 2], [3, 4, 5]]
# Broadcasting
F = np_array([[1, 2, 3], [4, 5, 6]])
G = G + 10 \# [[11, 12, 13], [14, 15, 16]]
```


Logistic Regression

Problem 2: Tumor classification

Consider the problem of predicting whether a tumor is malignant or not based on its size:

Dataset D		
x (size cm)	y (malignant)	
9.63	1	
4.32	0	
5.42	0	
9.52	1	
•••	•••	

Why not using linear regression?

What happens if we try to use linear regression to solve this problem?

• Unbounded output $h(x) \in R$: produces outputs outside [0,1] interval

h(x) = wx + b

Why not using linear regression?

What happens if we try to use linear regression to solve this problem?

- Unbounded output $h(x) \in R$: produces outputs outside [0,1] interval
- Idea define a prediction **threshold**:

$$\hat{y} = \begin{cases} 0, \text{ if } h(x) < 0.5\\ 1, \text{ if } h(x) \ge 0.5 \end{cases}$$

h(x) = wx + b

Why not using linear regression?

What happens if we try to use linear regression to solve this problem?

- Unbounded output $h(x) \in R$: produces outputs outside [0,1] interval
- Idea define a prediction **threshold**:

$$\hat{y} = \begin{cases} 0, \text{ if } h(x) < 0.5\\ 1, \text{ if } h(x) \ge 0.5 \end{cases}$$

Sensitive to outliers: extreme values can significantly skew the decision boundary

h(x) = wx + b

Logistic Regression

• Hypothesis space
$$H$$
:
 $h(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$, where
 $\sigma(z) = \frac{1}{1 + e^{-z}}$ (logistic/sigmoid)

- Bounded output $0 \le h(\mathbf{x}) \le 1$
- Still use threshold for prediction: $\begin{cases} 0, \text{ if } h(x) < 0.5 \\ 1, \text{ if } h(x) \ge 0.5 \end{cases}$ $\hat{v} =$

In Logistic Regression, we want to find a logistic function $h_{{f w},b}({f x})$ that best fits the dataset D

Hypothesis Space(w)

Logistic Regression Models

UFV

Hypothesis space $h(x) = \frac{1}{1 + e^{-(wx+b)}}$

Hypothesis Space(b)

Logistic Regression Models

Hypothesis space $h(x) = \frac{1}{1 + e^{-(wx+b)}}$

Probability interpretation

- Logistic Regression: $h(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$
- Since $0 \le h(\mathbf{x}) \le 1$, we can interpret $h(\mathbf{x})$ as $h(\mathbf{x}) = P(y = 1 | \mathbf{x})$, the probability that the label of the feature vector \mathbf{x} is 1
- For example:

I JFV

- h(3) = P(y = 1 | x = 3) = 0.12
 12% of being malignant
- *h*(7) = *P*(*y* = 1 | *x* = 7) = 0.94
 94% of being malignant
- If we want to know the probability of benign: $P(y = 0 | \mathbf{x}) = 1 - P(y = 1 | \mathbf{x}) = 1 - h(\mathbf{x})$

Decision Boundary

UFV

To make a prediction $\hat{y} = h(x)$, we use a threshold:

$$= \begin{cases} 0, \text{ if } h(x) < 0.5 \\ 1, \text{ if } h(x) \ge 0.5 \end{cases}$$

Consider the following trained hypothesis:

$$\mathbf{x}) = \sigma(\mathbf{x}_1 + \mathbf{x}_2 - 3) \quad w = [1,1], b = -3$$
$$= \begin{cases} 0, \text{ if } x_1 + x_2 - 3 < 0\\ 1, \text{ if } x_1 + x_2 - 3 \ge 0 \end{cases}$$

The line $x_1 + x_2 = 3$ is called the **decision boundary** of the the logistic regression.

Loss Function

are from labels $y^{(i)}$ of examples $(\mathbf{x}^{(i)}, y^{(i)}) \in D$

We could try to use the MSE loss as in linear regression:

$$L(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2$$

However, for logistic regression this loss is **not convex**!

Given a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})\}$, want to measure how far the predictions $h(\mathbf{x}^{(i)})$

MSE Loss Landscape for Logistic Regression and Tumor Dataset

Binary Cross-Entropy Loss Function

Logistic Regression $h(\mathbf{x})$ gives the probability of a feature vector \mathbf{x} having label y = 1:

 $P(y = 1 | \mathbf{x})$

Given a dataset
$$D = \{ (\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)}) \}$$
 ma

1. Probabilities for a given feature vector $\mathbf{x}^{\mathbf{i}}$:

$$P(y^{(i)} = 1 | \mathbf{x}^{(i)}) = h(\mathbf{x}^{(i)})$$
$$P(y^{(i)} = 0 | \mathbf{x}^{(i)}) = 1 - h(\mathbf{x}^{(i)})$$

2. Grouping this two probabilities in one expression:

$$P(y^{(i)} | \mathbf{x}^{(i)}) = h(\mathbf{x}^{(i)})^{y^{(i)}} \cdot (1 - h(\mathbf{x}^{(i)}))^{(1-y^{(i)})}$$

$$h = h(\mathbf{x}) = \frac{1}{1 + e^{-\mathbf{w}\mathbf{x}+b}}$$

aximize $P(y^{(i)} | \mathbf{x}^{(i)})$ for each $(\mathbf{x}^{(i)}, y^{(i)}), \in D$:

3. Since we want to maximize $P(y^{(i)} | \mathbf{x}^{(i)})$ for each $(\mathbf{x}^{(i)}, y^{(i)}), \in D$: $L(h) = \prod_{i=1}^{m} h(\mathbf{x}^{(i)})^{y^{(i)}} \cdot (1 - h(\mathbf{x}^{(i)}))^{(1-y^{(i)})}$

4. Applying log and negating to transform into error:

$$L(h) = -\frac{1}{m} \sum_{i}^{m} y^{(i)} log(h(\mathbf{x}^{(i)})) + (1 - y^{(i)}) log(1 - h(\mathbf{x}^{(i)}))$$

Binary Cross-Entropy (BCE)

Binary Cross-Entropy Loss Function

Loss Landscape for Logistic Regression and Tumor Dataset

UFV

For Logistic Regression the Bynary Cross-Entropy loss is **convex**!

$$-\frac{1}{m}\sum_{i}^{m} y^{(i)} \log \hat{y}^{(i)} + (1 - y^{(i)}) \log(1 - \hat{y}^{(i)}),$$

Where $\hat{y}^{(\iota)} = h(\mathbf{x}^{(\iota)})$

Calculating the gradients for logistic regression

Logistic Regression

 $\hat{y} = \sigma(wx + b) = \frac{1}{1 + e^{-(wx + b)}}$

Binary Cross-Entropy for a single sample

 $\mathcal{L}(y,\hat{y}) = -[y\log(\hat{y}) + (1-y)\log(1-\hat{y})]$

Partial derivative of L with respect to w

 $\begin{aligned} \frac{\partial \hat{y}}{\partial z} &= \hat{y}(1-\hat{y}) \\ \frac{\partial \mathcal{L}}{\partial \hat{y}} &= -\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}} \\ \frac{\partial \mathcal{L}}{\partial z} &= \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} = \left(-\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}}\right) \cdot \hat{y}(1-\hat{y}) = \hat{y} - y \\ \frac{\partial \mathcal{L}}{\partial w} &= \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial w} = (\hat{y} - y) \cdot x \end{aligned}$

Partial derivative of L with respect to b

 $\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial b} = \hat{y} - y$

Gradient Descent for Logistic Regression

```
def optimize(x, y, lr, n_iter):
 # Init weights to zero
 w, b = 0, 0
 # Optimize weihts iteratively
  for t in range(n iter):
   # Predict x labels with w and b
   y_hat = sigmoid(np_dot(w,x) + b)
   # Compute gradients
   dw = (1 / m) * np_sum((y_hat - y) * x)
   db = (1 / m) * np_sum(y_hat - y)
   # Update weights
   w = w - lr * dw
   b = b - lr * db
  return w, b
```

UFV

Logistic Regression

$$z = w \cdot x + b$$
$$\hat{y} = h(x) = \frac{1}{1 + e^{-z}}$$

BCE Loss Function
$$L(h) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i))$$

Gradient

$$\frac{\partial L}{\partial w} = \frac{1}{m} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)}) x^{(i)}$$
$$\frac{\partial L}{\partial b} = \frac{1}{m} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})$$

Next Lecture

L5: MLP

Multilayer Perceptron for non-linearly separable problems

