L4: Logistic Regression

Deep Learning

1

Logistics

Announcements

‣ PA1: Logistic Regression will be out by the end of today.

Last Lecture

- ‣ Univariate Linear regression
	- ‣ Hypothesis space
	- ‣ MSE loss function
- ‣ Gradient Descent

Lecture Outline

- ‣ Linear regression with multiple features
- ‣ Vectorization
- ‣ Logistic Regression
	- ‣ Hypothesis space
	- ▶ Binary Cross-Entropy (BCE) Loss Function
	- ‣ Gradients

Univariate Linear Regression

4

‣ Univariate Linear Regression $h(x) = wx + b$

(price in 1000's USD) ‣ Univariate Linear Regression $h_{w,b}(x) = wx + b$

- ‣ Generaly (for *d* input features) $h_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \ldots + \mathbf{w}_d \mathbf{x}_d + b$
- ‣ Example: $h_{\mathbf{w},b}(\mathbf{x}) = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \mathbf{w}_3 \mathbf{x}_3 + b$ $h_{\mathbf{w},b}(\mathbf{x}) = 0.1\mathbf{x}_1 + 4\mathbf{x}_2 + -2\mathbf{x}_3 + 80$ size # of beds years base price

Multiple Linear Regression

- ‣ Multiple Linear Regression $h(\mathbf{x}) = w_1 x_1 + w_2 x_2 + \ldots + w_d x_d + b \longrightarrow h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$
- $\mathbf{w} = [\mathbf{w}_1, \mathbf{w}_2, \dots, \mathbf{w}_d]$ is a weight vector
- $\mathbf{x} = [\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_d]$ is an input vector
- \blacktriangleright *b* is a scalar (called bias)
- ‣ Dot product
	- $\mathbf{w} \cdot \mathbf{x} = \mathbf{w}_1 \mathbf{x}_1 + \mathbf{w}_2 \mathbf{x}_2 + \dots \mathbf{w}_d \mathbf{x}_d$

Dot product

Dot Product Notation


```
def optimize(X, y, lr, n_iter): 
 # Init weights to zero
 w, b = np.zeros(len(X[0])), 0
 # Optimize weihts iteratively
  for t in range(n_iter): 
   # Predict x labels with w and b 
   y_{h}hat = np.dot(X, w) + b
   # Compute gradients 
   dw = np.dot(X.T, (y_hat - y)) / len(y)db = np.macan(y_hat - y)# Update weights
   w = w - \ln x dw
   b = b - \ln x db
  return w, b
```
UFV

Loss Function $L(h_{\mathbf{w},b}) =$ 1 2*m m* ∑ *i*=1 $(h_{\mathbf{w},b}(\mathbf{x}^{(i)}) - y^{(i)})^2$

Multiple Linear Regression

 $h(\mathbf{x}) = \mathbf{w} \cdot \mathbf{x} + b$

Gradient

Gradient Descent for Multiple Linear Regression

Vectorization

Vectorization

Vectorization in ML programming is the process of optimizing code to perform operations on entire vectors or matrices at once, rather than using explicit loops.

Benefits:

- ‣ Significantly faster execution (takes advantage of SIMD instructions)
- ‣ More concise and readable code
- ‣ Better utilization of modern CPU/GPU architectures
- ‣ Improved scalability for large datasets

Vectorizing multiple linear regression

Without vectorization A *Vectorization*

```
# Input features as a list
x = [152, 4, 24]# Weights as a list
w = [0.1, 4.0, -2.0]# Bias term as a float
b = 4def model(x, w, b): 
    y_hat = 0
     for i in range(len(x)): 
        y hat += w[i] * x[I] return y_hat + b
```

```
import numpy as np 
# Input features as a vector 
x = np<u>array([152</u>, 4, 24])# Weights as a vector 
w = np<u>.array([0.1</u>, 4.0, <math>-2.0])
# Bias term as a float 
b = 4def model(x, w, b): 
      return np.dot(w, x) + b
```
11

```
def model(x, w, b): 
    d = len(x)y_hat = 0
     for i in range(d): 
        y hat += w[i] * x[i]
```
Why vectorization speeds up ML code

Without vectorization A *Vectorization*

return y_hat + b

Vectorizing loss function (MSE)

Without vectorization A *Vectorization*

```
# Labels as a list 
y = [30, 70, 120]# Predictions as a list 
y_{\text{hat}} = [27, 92, 33]def loss(y, y_hat): 
    l = 0m = len(y) for i in range(m): 
         l := (y_{hat[i]} - y[i]) * * 2 return l / (2 * m)
```


def loss(y, y_hat): return $np.macan((y - y_hat) ** 2)$

import numpy **as** np

```
# Labels as a list 
y = np.array([30, 70, 120])
```

```
# Predictions as a list
y_{h}hat = np.array([27, 92, 33])
```


Vectorizing gradient descent Without vectorization C

```
X = [[152, 4, 24], [229, 3, 35], [84, 1, 10]]y = [1550, 2286, 293]def optimize(X, y, n_iter, alpha): 
  m = len(X), d = len(X[0])w = [0.0] * db = 0.0 for i in range(n_iter): 
     # Compute predictions 
    # Compute gradients
    dw = [0.0] * ddb = 0.0 for i in range(m): 
       for j in range(d): 
        dw[j] += (y_hat[i] - y[i]) * X[i][j]
      db += (yhat[i] - y[i])# Update weights and bias
```

```
import numpy as np 
X = np<u>array([[152</u>, 4, 24], [229, 3, 35], 
                [84, 1, 10]] 
y = nparrow(1550, 2286, 293)def optimize(X, y, n_iter, alpha): 
    d = X. shape [1]w = np.zeros(d)
    b = 0.0 # Compute predictions 
    # Compute gradients
    dw = np.dot(X.T, (y_hat - y)) / len(y)db = np.macan(y_hat - y)# Update weights and bias
```


NumPy (Numerical Python) is a library for scientific computing in Python. It provides support for large, multi-dimensional arrays and matrices, along with a collection of mathematical functions

```
# Create arrays 
x = np.array([1, 2, 3, 4, 5])y = np.array([2, 4, 6, 8, 10])# Element-wise operations 
z = x + y # [3, 6, 9, 12, 15]
w = x * y # [2, 8, 18, 32, 50]# Matrix multiplication
A = np<u>array([[1</u>, 2], [3, 4]])B = nparrow ([[5, 6], [7, 8]])
C = np.dot(A, B) # [19, 22], [43, 50]]
```


to operate on these arrays efficiently.

```
# Statistical operations 
mean = np \cdot mean(x) # 3.0
std = np.setd(x) # 1.41421356...
# Reshaping 
D = np.arange(6) # [0, 1, 2, 3, 4, 5]E = D. reshape(2, 3) # [[0, 1, 2], [3, 4, 5]]
# Broadcasting 
F = np<u>array([[1</u>, 2, 3], [4, 5, 6]])G = G + 10 # [[11, 12, 13], [14, 15, 16]]
```
Logistic Regression

Problem 2: Tumor classification

Consider the problem of predicting whether a tumor is malignant or not based on its size:

Why not using linear regression?

What happens if we try to use linear regression to solve this problem?

 \rightarrow Unbounded output $h(x) \in R$: produces outputs outside $[0,1]$ interval

 $h(x) = wx + b$

Tumor Size (cm)

Why not using linear regression?

What happens if we try to use linear regression to solve this problem?

- \rightarrow Unbounded output $h(x) \in R$: produces outputs outside $[0,1]$ interval
- ‣ Idea define a prediction **threshold**:

$$
\hat{y} = \begin{cases} 0, & \text{if } h(x) < 0.5 \\ 1, & \text{if } h(x) \ge 0.5 \end{cases}
$$

Why not using linear regression?

What happens if we try to use linear regression to solve this problem?

- \rightarrow Unbounded output $h(x) \in R$: produces outputs outside $[0,1]$ interval
- ‣ Idea define a prediction **threshold**:

‣ Sensitive to outliers: extreme values can significantly skew the decision boundary

$$
\hat{y} = \begin{cases}\n0, & \text{if } h(x) < 0.5 \\
1, & \text{if } h(x) \ge 0.5\n\end{cases}
$$

 $h(x) = wx + b$

► Hypothesis space *H*:
\n
$$
h(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x} + b), \text{ where}
$$
\n
$$
\sigma(z) = \frac{1}{1 + e^{-z}} \text{ (logistic/sigmoid)}
$$

- ▶ Bounded output $0 \leq h(\mathbf{x}) \leq 1$
- ‣ Still use threshold for prediction: $\hat{\mathbf{v}} =$ $=$ { $0,$ if $h(x) < 0.5$ 1, if $h(x) \ge 0.5$

Logistic Regression

In **Logistic Regression**, we want to find a logistic function $h_{\mathbf{w},b}(\mathbf{x})$ that best fits the dataset D

Hypothesis Space (w)

Hypothesis space $h(x) =$ 1 $1 + e^{-(wx+b)}$

Logistic Regression Models

Hypothesis Space (b)

Hypothesis space $h(x) =$ 1 $1 + e^{-(wx+b)}$

Logistic Regression Models

Probability interpretation

- Logistic Regression: $h(\mathbf{x}) = \sigma(\mathbf{w} \cdot \mathbf{x} + b)$
- ▶ Since $0 \leq h(x) \leq 1$, we can interpret $h(x)$ as $h(\mathbf{x}) = P(y = 1 | \mathbf{x})$, the probability that the label of the feature vector $\mathbf x$ is 1
- ‣ For example:

- $h(3) = P(y = 1 | x = 3) = 0.12$ 12% of being malignant
- $h(7) = P(y = 1 | x = 7) = 0.94$ 94% of being malignant
- ‣ If we want to know the probability of benign: $P(y = 0 | \mathbf{x}) = 1 - P(y = 1 | \mathbf{x}) = 1 - h(\mathbf{x})$ 0

Decision Boundary

UFV

To make a prediction $\hat{y} = h(x)$, we use a threshold:

Consider the following trained hypothesis: $h(\mathbf{x}) = \sigma(\mathbf{x}_1 + \mathbf{x}_2 - 3)$ *w* = [1,1], *b* = -3 $\hat{y} = \{$ 0, if $x_1 + x_2 - 3 < 0$ 1, if $x_1 + x_2 - 3 \ge 0$

The line $x_1 + x_2 = 3$ is called the **decision boundary** of the the logistic regression.

$$
\hat{y} = \begin{cases} 0, \text{ if } h(x) < 0.5\\ 1, \text{ if } h(x) \ge 0.5 \end{cases}
$$

Loss Function

are from labels $y^{(i)}$ of examples $(\mathbf{x}^{(i)}, y^{(i)}) \in D$

We could try to use the MSE loss as in linear regression:

However, for logistic regression this loss is **not convex**!

Given a dataset $D = \{(\mathbf{x}^{(1)}, y^{(1)}), ..., (\mathbf{x}^{(m)}, y^{(m)})\}$, want to measure how far the predictions $h(\mathbf{x^{(i)}})$

MSE Loss Landscape for Logistic Regression and Tumor Dataset

$$
L(h) = \frac{1}{m} \sum_{i=1}^{m} (h(\mathbf{x}^{(i)}) - y^{(i)})^2
$$

Binary Cross-Entropy Loss Function

Logistic Regression $h(\mathbf{x})$ gives the probability of a feature vector \mathbf{x} having label $y = 1$:

 $P(y = 1 | \mathbf{x})$

m 3. Since we want to maximize $P(y^{(i)} | \mathbf{x}^{(i)})$ for each $(\mathbf{x}^{(i)}, y^{(i)}), \in D$:

$$
=h(\mathbf{x})=\frac{1}{1+e^{-\mathbf{w}\mathbf{x}+b}}
$$

$$
P(y^{(i)} = 1 | \mathbf{x}^{(i)}) = h(\mathbf{x}^{(i)})
$$

$$
P(y^{(i)} = 0 | \mathbf{x}^{(i)}) = 1 - h(\mathbf{x}^{(i)})
$$

$$
P(y^{(i)} | \mathbf{x}^{(i)}) = h(\mathbf{x}^{(i)})^{y^{(i)}} \cdot (1 - h(\mathbf{x}^{(i)}))^{(1 - y^{(i)})}
$$

$$
L(h) = \prod_{i=1}^{n} h(\mathbf{x}^{(i)})^{y^{(i)}} \cdot (1 - h(\mathbf{x}^{(i)}))^{(1 - y^{(i)})}
$$

Given a dataset
$$
D = \{ (\mathbf{x}^{(1)}, y^{(1)}, ..., (\mathbf{x}^{(m)}, y^{(m)}) \}
$$
 maximize $P(y^{(i)} | \mathbf{x}^{(i)})$ for each $(\mathbf{x}^{(i)}, y^{(i)})$, $\in D$:

$$
L(h) = -\frac{1}{m} \sum_{i}^{m} y^{(i)} log(h(\mathbf{x}^{(i)})) + (1 - y^{(i)}) log(1 - h(\mathbf{x}^{(i)}))
$$

Binary Cross-Entropy (BCE)

2. Grouping this two probabilities in one expression:

1. Probabilities for a given feature vector **x** : **i**

4. Applying log and negating to transform into error:

Binary Cross-Entropy Loss Function

Loss Landscape for Logistic Regression and Tumor Dataset

UFV

$$
-\frac{1}{m}\sum_{i}^{m} y^{(i)}\log \hat{y}^{(i)} + (1 - y^{(i)})\log(1 - \hat{y}^{(i)}),
$$

Where $\hat{y}^{(i)} = h(\mathbf{x}^{(i)})$ **T**

For Logistic Regression the Bynary Cross-Entropy loss is **convex**!

 $L(h) =$

Calculating the gradients for logistic regression

Logistic Regression

 $\hat{y} = \sigma(wx + b) = \frac{1}{1 + e^{-(wx + b)}}$

Binary Cross-Entropy for a single sample

 $\mathcal{L}(y, \hat{y}) = -[y \log(\hat{y}) + (1 - y) \log(1 - \hat{y})]$

Partial derivative of L with respect to w

 $\frac{\partial \hat{y}}{\partial z} = \hat{y}(1 - \hat{y})$ $\frac{\partial \mathcal{L}}{\partial \hat{n}} = -\frac{y}{\hat{n}} + \frac{1-y}{1-\hat{n}}$ $\frac{\partial \mathcal{L}}{\partial z} = \frac{\partial \mathcal{L}}{\partial \hat{y}} \cdot \frac{\partial \hat{y}}{\partial z} = \left(-\frac{y}{\hat{y}} + \frac{1-y}{1-\hat{y}} \right) \cdot \hat{y}(1-\hat{y}) = \hat{y} - y$ $\frac{\partial \mathcal{L}}{\partial w} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial w} = (\hat{y} - y) \cdot x$

Partial derivative of L with respect to b

 $\frac{\partial \mathcal{L}}{\partial b} = \frac{\partial \mathcal{L}}{\partial z} \cdot \frac{\partial z}{\partial b} = \hat{y} - y$

Gradient Descent for Logistic Regression

UFV

Logistic Regression

Gradient

$$
z = w \cdot x + b
$$

$$
\hat{y} = h(x) = \frac{1}{1 + e^{-z}}
$$

BCE Loss Function
\n
$$
L(h) = -\frac{1}{n} \sum_{i=1}^{n} (y_i \log \hat{y}_i + (1 - y_i) \log (1 - \hat{y}_i))
$$

$$
\frac{\partial L}{\partial w} = \frac{1}{m} \sum_{i=1}^{n} (y^{(i)} - y^{(i)})x^{(i)}
$$

$$
\frac{\partial L}{\partial b} = \frac{1}{m} \sum_{i=1}^{n} (\hat{y}^{(i)} - y^{(i)})
$$

Next Lecture

L5: MLP

Multilayer Perceptron for non-linearly separable problems

