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Logistics

Announcements 
‣  PA1: Logistic Regression will be out by the end of today. 

Last Lecture 

‣ Univariate Linear regression 

‣ Hypothesis space 

‣ MSE loss function 

‣ Gradient Descent
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Lecture Outline

‣ Linear regression with multiple features 

‣ Vectorization 

‣ Logistic Regression  

‣ Hypothesis space 

‣ Binary Cross-Entropy (BCE) Loss Function 

‣ Gradients
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Univariate Linear Regression
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Dataset D

x 
(size m)

y 
(Price in 1000’s USD)

55 144

61 200

84 293

95 196

… …

‣ Univariate Linear Regression 

h(x) = wx + b
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Dataset D

x1 
(size m)

x2 

(# of beds) 
x3 

(age in years)
y 

(price in 1000’s USD)

152 4 24 1550

229 3 35 2286

84 1 10 293

95 3 14 196

… … … …

‣ Example: 

hw,b(x) = w1x1 + w2x2 + w3x3 + b

‣ Univariate Linear Regression 

hw,b(x) = wx + b

‣ Generaly (for  input features) d
hw,b(x) = w1x1 + w2x2 + . . . + wdxd + b

hw,b(x) = 0.1x1 + 4x2 + −2x3 + 80
size # of beds years base price

Multiple Linear Regression
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‣ Multiple Linear Regression 

h(x) = w1x1 + w2x2 + . . . + wdxd + b

‣  is a weight vector 

‣  is an input vector 

‣  is a scalar (called bias)

w = [w1, w2, . . . , wd]
x = [x1, x2, . . . , xd]
b

‣ Dot product 
w ⋅ x = w1x1 + w2x2 + . . . wdxd

h(x) = w ⋅ x + b
Dot product 

Dot Product Notation



7

def optimize(X, y, lr, n_iter): 
# Init weights to zero 
w, b = np.zeros(len(X[0])), 0 

# Optimize weihts iteratively 
for t in range(n_iter): 
# Predict x labels with w and b 
y_hat = np.dot(X, w) + b 

# Compute gradients 
dw = np.dot(X.T, (y_hat - y)) / len(y) 
db = np.mean(y_hat - y) 

# Update weights 
w = w - lr * dw 
b = b - lr * db  

return w, b 

Multiple Linear Regression 

 

Loss Function 

 

Gradient 

h(x) = w ⋅ x + b

L(hw,b) =
1

2m

m

∑
i=1

(hw,b(x(i)) − y(i))2

∂L
∂wj

=
1
m

m

∑
i=1

(hw,b(x(i)) − y(i))x(i)
j

∂L
∂b

=
1
m

m

∑
i=1

(hw,b(x(i)) − y(i))

Gradient Descent for Multiple Linear Regression



Vectorization
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Vectorization

Vectorization in ML programming is the process of optimizing code to perform 
operations on entire vectors or matrices at once, rather than using explicit loops. 

Benefits: 
‣ Significantly faster execution (takes advantage of SIMD instructions) 
‣ More concise and readable code 
‣ Better utilization of modern CPU/GPU architectures 
‣ Improved scalability for large datasets



10

Vectorizing multiple linear regression

# Input features as a list 
x = [152, 4, 24] 

# Weights as a list 
w = [0.1, 4.0, -2.0] 

# Bias term as a float 
b = 4 

def model(x, w, b): 
    y_hat = 0 
    for i in range(len(x)): 
        y_hat += w[i] * x[I] 

    return y_hat + b

import numpy as np 

# Input features as a vector 
x = np.array([152, 4, 24]) 

# Weights as a vector 
w = np.array([0.1, 4.0, -2.0]) 

# Bias term as a float 
b = 4 

def model(x, w, b):  
return np.dot(w, x) + b 

Vectorization 😃Without vectorization 😞
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Why vectorization speeds up ML code

def model(x, w, b):  
    d = len(x) 
    y_hat = 0  
    for i in range(d): 
        y_hat += w[i] * x[i] 
    
    return y_hat + b

def model(x, w, b):  
    return np.dot(w, x) + b 

       y_hat + w[0]*x[0] 
       y_hat + w[1]*x[1] 

 
      y_hat + w[d]*x[d]

t0
t1
. . .
td

w[0] w[1] … w[d]

* * * *

w[0]*x[0] + + … +

x[0] x[1] … x[d]

w[1]*x[1] w[d]*x[d]

t0

t1
Parallel (SIMD)

Vectorization 😃Without vectorization 😞
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Vectorizing loss function (MSE)
Vectorization 😃Without vectorization 😞

# Labels as a list 
y = [30, 70, 120] 

# Predictions as a list 
y_hat = [27, 92, 33]  

def loss(y, y_hat):  
    l = 0 

    m = len(y)  
    for i in range(m): 
        l += (y_hat[i] - y[i]) ** 2 

    return l / (2 * m) 

import numpy as np  

# Labels as a list 
y = np.array([30, 70, 120]) 

# Predictions as a list 
y_hat = np.array([27, 92, 33]) 

def loss(y, y_hat):  
    return np.mean((y - y_hat) ** 2) 
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Vectorizing gradient descent
Vectorization 😃Without vectorization 😞

X = [[152, 4, 24], [229, 3, 35], [84,  1, 10]] 
y = [1550, 2286, 293] 

def optimize(X, y, n_iter, alpha): 
  m = len(X), d = len(X[0]) 
  w = [0.0] * d 
  b = 0.0 

  for i in range(n_iter): 
    # Compute predictions 

    # Compute gradients 
    dw = [0.0] * d 
    db = 0.0 
     
    for i in range(m): 
      for j in range(d): 
        dw[j] += (y_hat[i] - y[i]) * X[i][j] 
      db += (y_hat[i] - y[i]) 
     
    # Update weights and bias 
       

import numpy as np  

X = np.array([[152, 4, 24],  
     [229, 3, 35],  
     [84,  1, 10]] 

y = np.array([1550, 2286, 293]) 

def optimize(X, y, n_iter, alpha): 
    d = X.shape[1] 
    w = np.zeros(d) 
    b = 0.0 

    # Compute predictions 

    # Compute gradients 
    dw = np.dot(X.T, (y_hat - y)) / len(y) 
    db = np.mean(y_hat - y) 

    # Update weights and bias
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Numpy

NumPy (Numerical Python) is a library for scientific computing in Python. It provides support for 
large, multi-dimensional arrays and matrices, along with a collection of mathematical functions 
to operate on these arrays efficiently.

# Create arrays 
x = np.array([1, 2, 3, 4, 5]) 
y = np.array([2, 4, 6, 8, 10]) 

# Element-wise operations 
z = x + y  # [3, 6, 9, 12, 15] 
w = x * y  # [2, 8, 18, 32, 50] 

# Matrix multiplication 
A = np.array([[1, 2], [3, 4]]) 
B = np.array([[5, 6], [7, 8]]) 
C = np.dot(A, B)  # [[19, 22], [43, 50]] 

# Statistical operations 
mean = np.mean(x)  # 3.0 
std = np.std(x)    # 1.41421356... 

# Reshaping 
D = np.arange(6) # [0, 1, 2, 3, 4, 5] 
E = D.reshape(2, 3) # [[0, 1, 2], [3, 4, 5]] 

# Broadcasting 
F = np.array([[1, 2, 3], [4, 5, 6]]) 
G = G + 10  # [[11, 12, 13], [14, 15, 16]]



Logistic Regression
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Problem 2: Tumor classification
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Consider the problem of predicting whether a tumor is malignant or not based on its size:

Dataset D

x 
(size cm)

y 
(malignant)

9.63 1

4.32 0

5.42 0

9.52 1

… …



Why not using linear regression?
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What happens if we try to use linear regression to solve this problem?

‣ Unbounded output : produces 
outputs outside  interval

h(x) ∈ R
[0,1]

h(x) = wx + b



Why not using linear regression?
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What happens if we try to use linear regression to solve this problem?

‣ Unbounded output : produces 
outputs outside  interval 

‣ Idea — define a prediction threshold: 

h(x) ∈ R
[0,1]

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

h(x) = wx + b

h(x) = 0

h(x) = 10.5



Why not using linear regression?
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What happens if we try to use linear regression to solve this problem?

‣ Unbounded output : produces 
outputs outside  interval 

‣ Idea — define a prediction threshold: 

 

‣ Sensitive to outliers: extreme values can 
significantly skew the decision boundary

h(x) ∈ R
[0,1]

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

h(x) = wx + b

h(x) = 0

h(x) = 1

h(x) = wx + b

0.5



‣ Hypothesis space : 

, where 

   (logistic/sigmoid) 

‣ Bounded output  

‣ Still use threshold for prediction: 

H
h(x) = σ(w ⋅ x + b)

σ(z) =
1

1 + e−z

0 ≤ h(x) ≤ 1

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

Logistic Regression
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In Logistic Regression, we want to find a logistic function  that best fits the dataset hw,b(x) D

z = w ⋅ x + b

σ(z)

0.5



Hypothesis Space (w)
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h(x) =
1

1 + e−(0)
h(x) =

1
1 + e−(x)

h(x) =
1

1 + e−(2x)

Hypothesis space 

h(x) =
1

1 + e−(wx+b)



Hypothesis Space (b)
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Hypothesis space 

h(x) =
1

1 + e−(wx+b)

h(x) =
1

1 + e−(x)
h(x) =

1
1 + e−(x−5)

h(x) =
1

1 + e−(x+5)



Probability interpretation
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‣ Logistic Regression:  

‣ Since ,  we can interpret   as
 ,  the probability that the label 

of the feature vector  is  

‣ For example: 
‣     

12% of being malignant  
‣   

94% of being malignant  

‣ If we want to know the probability of benign: 
    

h(x) = σ(w ⋅ x + b)

0 ≤ h(x) ≤ 1 h(x)
h(x) = P(y = 1 |x)

x 1

h(3) = P(y = 1 |x = 3) = 0.12

h(7) = P(y = 1 |x = 7) = 0.94

P(y = 0 |x) = 1 − P(y = 1 |x) = 1 − h(x) 0

σ(z)

3 7

0.94

0.12



Decision Boundary
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h(x) = σ(w ⋅ x + b)
Logistic Regression

x1

x2

1 2 3

1

2

3

To make a prediction , we use a threshold: 

   

Consider the following trained hypothesis: 
        

 

The line  is called the decision boundary of 
the the logistic regression.

̂y = h(x)

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

h(x) = σ(x1 + x2 − 3) w = [1,1], b = − 3

̂y = {0, if x1 + x2 − 3 < 0
1, if x1 + x2 − 3 ≥ 0

x1 + x2 = 3



Loss Function

Given a dataset , want to measure how far the predictions  
are from labels  of examples   

We could try to use the MSE loss as in linear regression: 

 

However, for logistic regression this loss is not convex! 

D = {(x(1), y(1)), …, (x(m), y(m))} h(x(i))
y(i) (x(i), y(i)) ∈ D

L(h) =
1
m

m

∑
i=1

(h(x(i)) − y(i))2
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Binary Cross-Entropy Loss Function
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Logistic Regression  gives the probability of a feature vector   having label : 

 

h(x) x y = 1

P(y = 1 |x) = h(x) =
1

1 + e−wx+b

 P(y(i) = 1 |x(i)) = h(x(i))

P(y(i) = 0 |x(i)) = 1 − h(x(i))

P(y(i) |x(i)) = h(x(i))y(i) ⋅ (1 − h(x(i)))(1−y(i))

L(h) =
m

∏
i=1

h(x(i))y(i) ⋅ (1 − h(x(i)))(1−y(i))

L(h) = −
1
m

m

∑
i

y(i) log(h(x(i))) + (1 − y(i)) log(1 − h(x(i)))

Given a dataset  maximize  for each : D = {(x(1), y(1)), …, (x(m), y(m))} P(y(i) |x(i)) (x(i), y(i)), ∈ D

2. Grouping this two probabilities in one expression:

Binary Cross-Entropy (BCE)

1. Probabilities for a given feature vector :xi

4. Applying log and negating to transform into error:

3. Since we want to maximize  for each : P(y(i) |x(i)) (x(i), y(i)), ∈ D



Binary Cross-Entropy Loss Function
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, 

Where 

L(h) = −
1
m

m

∑
i

y(i) log ̂y(i) + (1 − y(i)) log(1 − ̂y(i))

̂y(i) = h(x(i))

For Logistic Regression the Bynary Cross-
Entropy loss is convex! 



Calculating the gradients for logistic regression
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Gradient Descent for Logistic Regression 
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def optimize(x, y, lr, n_iter): 
# Init weights to zero 
w, b = 0, 0 

# Optimize weihts iteratively 
for t in range(n_iter): 
# Predict x labels with w and b 
y_hat = sigmoid(np.dot(w,x) + b) 

# Compute gradients 
dw = (1 / m) * np.sum((y_hat - y) * x) 
db = (1 / m) * np.sum(y_hat - y) 

# Update weights 
w = w - lr * dw 
b = b - lr * db  

return w, b 

Logistic Regression 

 

 

BCE Loss Function 

 

Gradient 

z = w ⋅ x + b
̂y = h(x) =

1
1 + e−z

L(h) = −
1
n

n

∑
i=1

(yi log ̂yi + (1 − yi) log (1 − ̂yi))

∂L
∂w

=
1
m

n

∑
i=1

( ̂y(i) − y(i))x(i)

∂L
∂b

=
1
m

n

∑
i=1

( ̂y(i) − y(i))



Next Lecture

L5: MLP 

Multilayer Perceptron for non-linearly separable problems 
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