
INF721

L4: Logistic Regression

Deep Learning

2024/2

1

Logistics

Announcements
‣ PA1: Logistic Regression will be out by the end of today.

Last Lecture

‣ Univariate Linear regression

‣ Hypothesis space

‣ MSE loss function

‣ Gradient Descent

2

Lecture Outline

‣ Linear regression with multiple features

‣ Vectorization

‣ Logistic Regression

‣ Hypothesis space

‣ Binary Cross-Entropy (BCE) Loss Function

‣ Gradients

3

Univariate Linear Regression

4

Dataset D

x
(size m)

y
(Price in 1000’s USD)

55 144

61 200

84 293

95 196

… …

‣ Univariate Linear Regression

h(x) = wx + b

5

Dataset D

x1
(size m)

x2

(# of beds)
x3

(age in years)
y

(price in 1000’s USD)

152 4 24 1550

229 3 35 2286

84 1 10 293

95 3 14 196

… … … …

‣ Example:

hw,b(x) = w1x1 + w2x2 + w3x3 + b

‣ Univariate Linear Regression

hw,b(x) = wx + b

‣ Generaly (for input features) d
hw,b(x) = w1x1 + w2x2 + . . . + wdxd + b

hw,b(x) = 0.1x1 + 4x2 + −2x3 + 80
size # of beds years base price

Multiple Linear Regression

6

‣ Multiple Linear Regression

h(x) = w1x1 + w2x2 + . . . + wdxd + b

‣ is a weight vector

‣ is an input vector

‣ is a scalar (called bias)

w = [w1, w2, . . . , wd]
x = [x1, x2, . . . , xd]
b

‣ Dot product
w ⋅ x = w1x1 + w2x2 + . . . wdxd

h(x) = w ⋅ x + b
Dot product

Dot Product Notation

7

def optimize(X, y, lr, n_iter):
Init weights to zero
w, b = np.zeros(len(X[0])), 0

Optimize weihts iteratively
for t in range(n_iter):
Predict x labels with w and b
y_hat = np.dot(X, w) + b

Compute gradients
dw = np.dot(X.T, (y_hat - y)) / len(y)
db = np.mean(y_hat - y)

Update weights
w = w - lr * dw
b = b - lr * db

return w, b

Multiple Linear Regression

Loss Function

Gradient

h(x) = w ⋅ x + b

L(hw,b) =
1

2m

m

∑
i=1

(hw,b(x(i)) − y(i))2

∂L
∂wj

=
1
m

m

∑
i=1

(hw,b(x(i)) − y(i))x(i)
j

∂L
∂b

=
1
m

m

∑
i=1

(hw,b(x(i)) − y(i))

Gradient Descent for Multiple Linear Regression

Vectorization

8

9

Vectorization

Vectorization in ML programming is the process of optimizing code to perform
operations on entire vectors or matrices at once, rather than using explicit loops.

Benefits:
‣ Significantly faster execution (takes advantage of SIMD instructions)
‣ More concise and readable code
‣ Better utilization of modern CPU/GPU architectures
‣ Improved scalability for large datasets

10

Vectorizing multiple linear regression

Input features as a list
x = [152, 4, 24]

Weights as a list
w = [0.1, 4.0, -2.0]

Bias term as a float
b = 4

def model(x, w, b):
 y_hat = 0
 for i in range(len(x)):
 y_hat += w[i] * x[I]

 return y_hat + b

import numpy as np

Input features as a vector
x = np.array([152, 4, 24])

Weights as a vector
w = np.array([0.1, 4.0, -2.0])

Bias term as a float
b = 4

def model(x, w, b):
return np.dot(w, x) + b

Vectorization 😃Without vectorization 😞

11

Why vectorization speeds up ML code

def model(x, w, b):
 d = len(x)
 y_hat = 0
 for i in range(d):
 y_hat += w[i] * x[i]

 return y_hat + b

def model(x, w, b):
 return np.dot(w, x) + b

 y_hat + w[0]*x[0]
 y_hat + w[1]*x[1]

 y_hat + w[d]*x[d]

t0
t1
. . .
td

w[0] w[1] … w[d]

* * * *

w[0]*x[0] + + … +

x[0] x[1] … x[d]

w[1]*x[1] w[d]*x[d]

t0

t1
Parallel (SIMD)

Vectorization 😃Without vectorization 😞

12

Vectorizing loss function (MSE)
Vectorization 😃Without vectorization 😞

Labels as a list
y = [30, 70, 120]

Predictions as a list
y_hat = [27, 92, 33]

def loss(y, y_hat):
 l = 0

 m = len(y)
 for i in range(m):
 l += (y_hat[i] - y[i]) ** 2

 return l / (2 * m)

import numpy as np

Labels as a list
y = np.array([30, 70, 120])

Predictions as a list
y_hat = np.array([27, 92, 33])

def loss(y, y_hat):
 return np.mean((y - y_hat) ** 2)

13

Vectorizing gradient descent
Vectorization 😃Without vectorization 😞

X = [[152, 4, 24], [229, 3, 35], [84, 1, 10]]
y = [1550, 2286, 293]

def optimize(X, y, n_iter, alpha):
 m = len(X), d = len(X[0])
 w = [0.0] * d
 b = 0.0

 for i in range(n_iter):
 # Compute predictions

 # Compute gradients
 dw = [0.0] * d
 db = 0.0

 for i in range(m):
 for j in range(d):
 dw[j] += (y_hat[i] - y[i]) * X[i][j]
 db += (y_hat[i] - y[i])

 # Update weights and bias

import numpy as np

X = np.array([[152, 4, 24],
 [229, 3, 35],
 [84, 1, 10]]

y = np.array([1550, 2286, 293])

def optimize(X, y, n_iter, alpha):
 d = X.shape[1]
 w = np.zeros(d)
 b = 0.0

 # Compute predictions

 # Compute gradients
 dw = np.dot(X.T, (y_hat - y)) / len(y)
 db = np.mean(y_hat - y)

 # Update weights and bias

14

Numpy

NumPy (Numerical Python) is a library for scientific computing in Python. It provides support for
large, multi-dimensional arrays and matrices, along with a collection of mathematical functions
to operate on these arrays efficiently.

Create arrays
x = np.array([1, 2, 3, 4, 5])
y = np.array([2, 4, 6, 8, 10])

Element-wise operations
z = x + y # [3, 6, 9, 12, 15]
w = x * y # [2, 8, 18, 32, 50]

Matrix multiplication
A = np.array([[1, 2], [3, 4]])
B = np.array([[5, 6], [7, 8]])
C = np.dot(A, B) # [[19, 22], [43, 50]]

Statistical operations
mean = np.mean(x) # 3.0
std = np.std(x) # 1.41421356...

Reshaping
D = np.arange(6) # [0, 1, 2, 3, 4, 5]
E = D.reshape(2, 3) # [[0, 1, 2], [3, 4, 5]]

Broadcasting
F = np.array([[1, 2, 3], [4, 5, 6]])
G = G + 10 # [[11, 12, 13], [14, 15, 16]]

Logistic Regression

15

Problem 2: Tumor classification

16

Consider the problem of predicting whether a tumor is malignant or not based on its size:

Dataset D

x
(size cm)

y
(malignant)

9.63 1

4.32 0

5.42 0

9.52 1

… …

Why not using linear regression?

17

What happens if we try to use linear regression to solve this problem?

‣ Unbounded output : produces
outputs outside interval

h(x) ∈ R
[0,1]

h(x) = wx + b

Why not using linear regression?

18

What happens if we try to use linear regression to solve this problem?

‣ Unbounded output : produces
outputs outside interval

‣ Idea — define a prediction threshold:

h(x) ∈ R
[0,1]

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

h(x) = wx + b

h(x) = 0

h(x) = 10.5

Why not using linear regression?

19

What happens if we try to use linear regression to solve this problem?

‣ Unbounded output : produces
outputs outside interval

‣ Idea — define a prediction threshold:

‣ Sensitive to outliers: extreme values can
significantly skew the decision boundary

h(x) ∈ R
[0,1]

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

h(x) = wx + b

h(x) = 0

h(x) = 1

h(x) = wx + b

0.5

‣ Hypothesis space :

, where

 (logistic/sigmoid)

‣ Bounded output

‣ Still use threshold for prediction:

H
h(x) = σ(w ⋅ x + b)

σ(z) =
1

1 + e−z

0 ≤ h(x) ≤ 1

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

Logistic Regression

20

In Logistic Regression, we want to find a logistic function that best fits the dataset hw,b(x) D

z = w ⋅ x + b

σ(z)

0.5

Hypothesis Space (w)

21

h(x) =
1

1 + e−(0)
h(x) =

1
1 + e−(x)

h(x) =
1

1 + e−(2x)

Hypothesis space

h(x) =
1

1 + e−(wx+b)

Hypothesis Space (b)

22

Hypothesis space

h(x) =
1

1 + e−(wx+b)

h(x) =
1

1 + e−(x)
h(x) =

1
1 + e−(x−5)

h(x) =
1

1 + e−(x+5)

Probability interpretation

23

‣ Logistic Regression:

‣ Since , we can interpret as
 , the probability that the label

of the feature vector is

‣ For example:
‣

12% of being malignant
‣

94% of being malignant

‣ If we want to know the probability of benign:

h(x) = σ(w ⋅ x + b)

0 ≤ h(x) ≤ 1 h(x)
h(x) = P(y = 1 |x)

x 1

h(3) = P(y = 1 |x = 3) = 0.12

h(7) = P(y = 1 |x = 7) = 0.94

P(y = 0 |x) = 1 − P(y = 1 |x) = 1 − h(x) 0

σ(z)

3 7

0.94

0.12

Decision Boundary

24

h(x) = σ(w ⋅ x + b)
Logistic Regression

x1

x2

1 2 3

1

2

3

To make a prediction , we use a threshold:

Consider the following trained hypothesis:

The line is called the decision boundary of
the the logistic regression.

̂y = h(x)

̂y = {0, if h(x) < 0.5
1, if h(x) ≥ 0.5

h(x) = σ(x1 + x2 − 3) w = [1,1], b = − 3

̂y = {0, if x1 + x2 − 3 < 0
1, if x1 + x2 − 3 ≥ 0

x1 + x2 = 3

Loss Function

Given a dataset , want to measure how far the predictions
are from labels of examples

We could try to use the MSE loss as in linear regression:

However, for logistic regression this loss is not convex!

D = {(x(1), y(1)), …, (x(m), y(m))} h(x(i))
y(i) (x(i), y(i)) ∈ D

L(h) =
1
m

m

∑
i=1

(h(x(i)) − y(i))2

25

Binary Cross-Entropy Loss Function

26

Logistic Regression gives the probability of a feature vector having label :

h(x) x y = 1

P(y = 1 |x) = h(x) =
1

1 + e−wx+b

 P(y(i) = 1 |x(i)) = h(x(i))

P(y(i) = 0 |x(i)) = 1 − h(x(i))

P(y(i) |x(i)) = h(x(i))y(i) ⋅ (1 − h(x(i)))(1−y(i))

L(h) =
m

∏
i=1

h(x(i))y(i) ⋅ (1 − h(x(i)))(1−y(i))

L(h) = −
1
m

m

∑
i

y(i) log(h(x(i))) + (1 − y(i)) log(1 − h(x(i)))

Given a dataset maximize for each : D = {(x(1), y(1)), …, (x(m), y(m))} P(y(i) |x(i)) (x(i), y(i)), ∈ D

2. Grouping this two probabilities in one expression:

Binary Cross-Entropy (BCE)

1. Probabilities for a given feature vector :xi

4. Applying log and negating to transform into error:

3. Since we want to maximize for each : P(y(i) |x(i)) (x(i), y(i)), ∈ D

Binary Cross-Entropy Loss Function

27

,

Where

L(h) = −
1
m

m

∑
i

y(i) log ̂y(i) + (1 − y(i)) log(1 − ̂y(i))

̂y(i) = h(x(i))

For Logistic Regression the Bynary Cross-
Entropy loss is convex!

Calculating the gradients for logistic regression

28

Gradient Descent for Logistic Regression

29

def optimize(x, y, lr, n_iter):
Init weights to zero
w, b = 0, 0

Optimize weihts iteratively
for t in range(n_iter):
Predict x labels with w and b
y_hat = sigmoid(np.dot(w,x) + b)

Compute gradients
dw = (1 / m) * np.sum((y_hat - y) * x)
db = (1 / m) * np.sum(y_hat - y)

Update weights
w = w - lr * dw
b = b - lr * db

return w, b

Logistic Regression

BCE Loss Function

Gradient

z = w ⋅ x + b
̂y = h(x) =

1
1 + e−z

L(h) = −
1
n

n

∑
i=1

(yi log ̂yi + (1 − yi) log (1 − ̂yi))

∂L
∂w

=
1
m

n

∑
i=1

(̂y(i) − y(i))x(i)

∂L
∂b

=
1
m

n

∑
i=1

(̂y(i) − y(i))

Next Lecture

L5: MLP

Multilayer Perceptron for non-linearly separable problems

30

