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Logistics

Announcements 
‣ I’ve included lecture notes and  readings on the course webpage 

Last Lecture 
‣ Machine Learning 

‣ Supervised Learning 

‣ Unsupervised  Learning 

‣ Reinforcement Learning 

‣ Supervised Learning Algorithms 

‣ Hypothesis space  

‣ Loss function 
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Lecture outline

‣ Univariate Linear Regression 

‣ Hypothesis space 

‣ Loss function 

‣ Gradient Descent 

‣ Derivatives 

‣ Partial Derivatives 

‣ Chain Rule 

‣ Gradient Descent for Univariate Linear Regression 
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Problem 1: House price Prediction
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Consider the problem of predicting the price of a house based on its size in squared meters:

Dataset D

x 
(size m)

y 
(Price in 1000’s USD)

55 144

61 200

84 293

95 196

… …



Linear Regression
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In Linear Regression, we want to find a linear function  that best fits the dataset h(x) D

‣ Hypothesis space : H
h(x) = wx + b

‣ Loss function : 

 

Mean Squared Error

L(h)

L(h) =
1

2m

n

∑
i=1

(h(x(i)) − y(i))2 h(x(i)) − y(i)



Hypothesis Space

6

‣ Hypothesis space : H
h(x) = wx + b

w = 0
b = 1.5

w = 0.5
b = 0

w = 0.5
b = 1

h(x) = 1.5 h(x) = 0.5x h(x) = 0.5x + 1



Loss Function
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w = 0

‣ Mean Squared Error 

L(hw) =
1

2m

n

∑
i=1

(wx(i) − y(i))2
‣ Simplified hypothesis ( ) b = 0

hw(x) = wx

L(hw) =
1

2 ⋅ 3
(0 − 1)2 + (0 − 2)2 + (0 − 3)2 = 2.333



Loss Function
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w = 0.5

‣ Mean Squared Error 

L(hw) =
1

2m

n

∑
i=1

(wx(i) − y(i))2
‣ Simplified hypothesis ( ) b = 0

hw(x) = wx

L(hw) =
1

2 ⋅ 3
(0.5 − 1)2 + (1 − 2)2 + (1.5 − 3)2 = 0.583



Loss Function
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‣ Mean Squared Error 

L(hw) =
1

2m

n

∑
i=1

(wx(i) − y(i))2
‣ Simplified hypothesis ( ) b = 0

hw(x) = wx

w = 1

L(hw) =
1

2 ⋅ 3
(1 − 1)2 + (2 − 2)2 + (3 − 3)2 = 0



Loss Function
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w = − 0.5

‣ Mean Squared Error 

L(hw) =
1

2m

n

∑
i=1

(wx(i) − y(i))2
‣ Simplified hypothesis ( ) b = 0

hw(x) = wx

L(hw) =
1

2 ⋅ 3
(−0.5 − 1)2 + (−1 − 2)2 + (−1.5 − 3)2 = 5.25



Loss Function

11

‣Convex function 
     Only one (global) minimum!

‣ Mean Squared Error 

L(hw) =
1

2m

n

∑
i=1

(wx(i) − y(i))2
‣ Simplified hypothesis ( ) b = 0

hw(x) = wx



Loss Function (complete)
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‣ Complete hypothesis:  

‣ Loss function 

h(x) = wx + b

L(h) =
1

2m

n

∑
i=1

(h(x(i)) − y(i))2



Gradient Descent
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Start with given  values and iteratively 
update these values in the direction of steepest 
descent of  until we settle at or near a minimum

w, b

L

How to calculate the direction of 
movement? Gradient vector!



Gradient Vector
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The gradient vector  of a multivariate function 
 is a vector where each element 

 is the partial derivative of  with respect to : 

  

The vector  points to the direction of fastest 
increase of  at point .

∇L
L(w1, w2, . . . , wd)
∇Li L wi

∇L =

∂L
∂w1

∂L
∂w2

⋮
∂L
∂wd

∇L(w)
L w

∇L =
∂L
∂w
∂L

∂wb



Derivatives
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x
0

The derivative of a function  at the point  represents 
the slope of the tangent line to that function at the point 

L x = a
a

f(x) f(x) = 3x
x = 2 f(x) = 6

x + h = 2.001 f(x + h) = 6.003

2 2.001

6

6.003

h = 0.001

0.003
=

0.003
0.001

= 3
x = 5 f(x) = 15

x + h = 5.001 f(x + h) = 15.003

df(x)
dx

= 3

How much  is affected when we add a tiny variation uma  
to .

f(x) h
x

In Calculus, this variation  is infinitely small:h

h = 0.001

slope =
height
width

=
f(x + h) − f(x)

h

The derivative of   at  is f(x) x = 2 3

df(x)
dx

= lim
h→0

f(x + h) − f(x)
h



Derivatives
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x
0

f(x) f(x) = x2

2 2.001

4

4.004

x = 2 f(x) = 4
x + h = 2.001 f(x + h) ≈ 4.004

x = 5 f(x) = 25
x + h = 5.001 f(x + h) = 25.010

h = 0.001

0.004

df(x)
dx

=
0.004
0.001

= 4

df(x)
dx

=
0.0010
0.001

= 10

df(x)
dx

=
dx2

dx
= 2x

h = 0.001

The derivative of a function  at the point  represents 
the slope of the tangent line to that function at the point 

L x = a
a



Derivative Rules
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Derivative Rules

1. Constant Rule:
d

dx
(c) = 0

2. Constant Multiple Rule:

d

dx
[cf(x)] = cf 0(x)

3. Power Rule:
d

dx
(xn) = nxn�1

4. Sum Rule:
d

dx
[f(x) + g(x)] = f 0(x) + g0(x)

5. Di↵erence Rule:

d

dx
[f(x)� g(x)] = f 0(x)� g0(x)

6. Product Rule:

d

dx
[f(x)g(x)] = f(x)g0(x) + g(x)f 0(x)

7. Quotient Rule:

d

dx


f(x)

g(x)

�
=

g(x)f 0(x)� f(x)g0(x)

[g(x)]2

8. Chain Rule:
d

dx
[f(g(x))] = f 0(g(x))g0(x)

1
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
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Partial Derivatives

f(x1, x2) = x2
1 + x2

2

x1

The partial derivative of a multivariate function  
 is its derivative with respect to one of its 

variables , and represents the rate of change of the 
function in the -direction.

f(x1, x2, . . . , xd)
xi

xi

∂f(x1, x2)
∂x1

=
∂x2

1

∂x1
+

∂x2
2

∂x1

∂f(x1, x2)
∂x2

= 2x1 + 0 = 2x1

=
∂x2

1

∂x2
+

∂x2
2

∂x2
= 0 + 2x2 = 2x2

(x1, x2) = (2, 5)

= 2 × 2

= 2 × 5

= 4

= 10

The gradient vector  is defined by the partial derivatives of  ∇f(x1, x2) f(x1, x2)

∇f(x1, x2) =

∂f(x1, x2)
∂x1

∂f(x1, x2)
∂x2

= [2x1

2x2] = [ 4
10]

h
h

∇f

x2



Chain rule
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To calculate the derivative of composite function   , 
we must use the chain rule: 

  

The derivative of the composite function  is the 
product of the derivative of the external function  with 
respect to  by the derivative of the internal function  with 
respect to .

f(g(x))

df
dx

=
df
dg

⋅
dg
dx

f(g(x))
f

g g
x

f(x) = (x2 + 1)3

g(x) = x2 + 1

f(g(x)) = g(x)3

Internal function:

External function:

df
dx

=
df
dg

⋅
dg
dx

dg
dx

= 2x

df
dg

= 3(g(x))2

= = 6x(x2 + 1)2(2x)3(x2 + 1)2 ⋅



Gradient Descent
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w
w(0) w(1) w(2) w(3) w(4) . . . w(T)

∂L
∂w

−
∂L
∂w

Start with given  values and iteratively 
update these values in the direction of steepest 
descent of : 

 

where  is a hiperparameter called learning rate, 
that controls the length of the gradient vector.

w, b

L

wt ← wt−1 − α
∂L
∂w

bt ← bt−1 − α
∂L
∂b

α

L(w)

0

−
∂L
∂w

−
∂L
∂w

−
∂L
∂w



Learning Rate
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Large learning rate 
Fast convergence, but suboptimal!

w

L(w)

0

w

L(w)

0

Small learning rate 
Slow convergence and can get 
stuck in local minima!

‣Gradient descent 

wt ← wt−1 − α
∂L
∂w

bt ← bt−1 − α
∂L
∂b



Calculating the gradients for linear regression
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∂L
∂w

=
∂

∂w
1

2m

m

∑
i=1

(h(x(i)) − y(i))2 =
∂

∂w
1

2m

m

∑
i=1

(wx(i) + b − y(i))2 =
∂

∂w
1

2m

m

∑
i=1

2 (wx(i) + b − y(i)) ⋅
∂

∂w
wx(i) + b − y(i)

=
1
m

m

∑
i=1

(h(x(i)) − y(i)) x(i)

∂L
∂b

=
∂
∂b

1
2m

m

∑
i=1

(h(x(i)) − y(i))2 =
∂
∂b

1
2m

m

∑
i=1

(wx(i) + b − y(i))2

=
∂

∂w
1

2m

m

∑
i=1

2 (wx(i) + b − y(i)) =
1
m

m

∑
i=1

(h(x(i)) − y(i))

=
∂

∂w
1

2m

m

∑
i=1

2(wx(i) + b − y(i)) x(i)

=
∂
∂b

1
2m

m

∑
i=1

2 (wx(i) + b − y(i)) ⋅
∂
∂b

wx(i) + b − y(i)



Gradient Descent for Linear Regression 
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Linear Regression 

 

Loss function 

 

Gradient 

h(x) = wx + b

L(h) =
1

2m

n

∑
i=1

(h(x(i)) − y(i))2

∂L
∂w

=
1
m

n

∑
i=1

(h(x(i)) − y(i))x(i)

∂L
∂b

=
1
m

n

∑
i=1

(h(x(i)) − y(i))

def optimize(x, y, lr, n_iter): 
# Init weights to zero 
w, b = 0, 0 

# Optimize weihts iteratively 
for t in range(n_iter): 
# Predict x labels with w and b 
y_hat = np.dot(w,x) + b 

# Compute gradients 
dw = (1 / m) * np.sum((y_hat - y) * x) 
db = (1 / m) * np.sum(y_hat - y) 

# Update weights 
w = w - lr * dw 
b = b - lr * db  

return w, b 



Next Lecture

L4: Logistic Regression 

A linear model for linearly separable classification problems
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