

Deep Learning

L1: Introduction

1

Lecture Outline

- Instructor and students
- Motivation
- Syllabus

Professor

Lucas N. Ferreira

Pós-doc at th PhD in Compu

Artificial Intelligence & Criativity

Music Generation, Procedural Content Generation, Game Al

Contact

Office - CCE401B Email - lucas.n.ferreira@ufv.br

UFV

Pós-doc at the University of Alberta (Amii)

PhD in Computer Science, University of California, Santa Cruz

Students

My name is ...

science, physics, ...]

am taking this course because ...

I am a [first, second...] year [undergrad, masters, phd]student in [computer]

4

Algorithms are traditionally implemented as concrete **functions** y = f(x)

Problem 1: double a number f(8) = 16f(24) = 48

Problem 2: shortest path f(Viçosa, Belo Horizonte) = Viçosa

Viçosa Teixeiras Ponte Nova Ouro Preto Belo Horizonte

Problem 2: shortest path

f(Viçosa, Belo Horizonte) – Vicosa

Dijsktra's Algorithm Bellman-Ford Floyd-Warshall

Solution

Beio Horizonte

Problem 3: image classification

f

f

= Cat

= Dog

Problem 3: image classification

f

f

The goal of **Machine Learning** is to find a function from experience (data) to perform a particular task

Neural Networks

Shallow Networks

Deep Neural Networks

Access to large amounts of data

- Automatic Differentiation Frameworks

Small datasets

Performance

Dataset size

11

This course

This course introduces students to the fundamentals and modern techniques of Deep Learning, aiming at enabling students to design and implement deep neural networks for classification, regression, and generation of unstructured data.

1. Neural Network Fundamentals

- Machine Learning
- Linear Models
- Gradient Descent
- Multilayer Perceptron (MLP)
- Backpropagation
- Numpy implementations

2. Improving Neural Networks Performance

- Regularization
- Normalization
- Advanced Optimization Algorithms
- Hyperparamenters Tunning
- Autograd

3. Advanced Arquitectures

- Convolutional Neural Networks
- Recurrent Neural Networks
- Transformers
- Case Studies
- Transfer Learning
- Pytorch Implementation

4. Generative Al

- Generative Adversarial Networks
- Autoregressive Models
- Variational Autoencoders
- Difusion Models

"Realistic photo of a dog sleeping on the couch in an apartment; books and plants in the background.", **Midjourney**

Prerequisites

INF213: Data Structures

- Python programming
- Basic data structures and their associated algorithms

MAT135: Analytic Geometry and Linear Algebra

Basic operations with vectors and matrices

MAT140: Calculus I

Derivatives of composite and multivariate functions

Grading

- Exams(40%)
- Programming Assignments (40%)
- ► Final Project (20%)

A list of (mostly multiple choice) questions taken **individually** in the classroom with a duration of 1:40h

- Midterm Exam 1
- Midterm Exam 2

Make up exams

so we can schedule a make up exam

If you can't take an exam for any personal reason, let the instructor know in advance

Programming Assignments

Implementing neural networks in Python and Jupyter Notebook using predefined classic datasets, with a duration of 1.5 weeks.

- P1: Logistic Regression
- P2: Multilayer Perceptron
- P3: Convolutional Neural Networks
- P4: Recurrent Neural Networks

Late Policy

- ▶ 15% penalization for each day late
- Max of 2 days late per assing

Final Project

Proposal, implementation, and evaluation of a transformer model for a learning problem of interest to the students, conducted individually or in pairs, with an approximate duration of 4 weeks.

- FP1: Project Proposal
- FP2: Project Implementation
- ► FP3: Project Presentation

Schedule

Week	Date	Lecture
1	09/09	1. Introdution
	11/09	2. Linear Models
2	16/09	3. Gradient Descent
	18/09	4. Evaluting Neural Networks
3	23/09	5. MLP I
	25/09	6. MLP II
4	30/09	7. Advanced Optimization Algorit
	02/10	8. Regularization and Normalizat
5	07/10	9: Hyperparameter Tunning
	09/10	Midterm Exam I
6	14/10	10. CNNs I
	16/10	11. CNNs II
7	21/10	12. RNNs I
	23/10	13. RNNs II

UFV

Programming Assignment

PA3: Convolutional Neural Networks

Schedule

Week	Date	Lecture
8	28/10	14. Word Embeddings
	30/10	Holyday (Dia da Cidade)
9	04/11	15. Attention
	06/11	16. Transformer I
10	11/11	17. Transformers II
	13/11	18. Transfer Learning
11	18/11	Midterm Exam II
	20/11	19. GANs
12	25/11	20. Variational Autoencoders
	27/11	21. Diffusion Models
13	02/12	22. Multimodal Learning
	04/12	23. Conclusion
14	09/12	Final Project Presentation I
	11/12	Final Project Presentation II

UFV

Communication

Google Spaces – Prefered!

- Questions about course content and logistics (~30 minutes latency)
- Email
 - Personal matters, such as grading and attendance (~2 days latency)

Appointments

Email, direct message, or talk to me after class to schedule an appointment

Course Website

UFV - INF721

About

Announcements

Grading

Resources

Schedule

Q Search UFV - INF721

INF721 - Deep Learning (2024/2)

This course introduces students to the fundamentals and modern techniques of Deep Learning, aiming at enabling students to design and implement deep neural networks for classification, regression, and generation of unstructured data.

Lucas N. Ferreira PPGCC Universidade Federal de Viçosa

Announcements

Week 1

Mar $1 \cdot 0$ min read

Welcome to INF712 - Deep Learning!

Lectures

- Mondays 2:00-3:40pm, CCE406
- Wednesdays 4:00-5:40pm, CCE406

Instructor

Lucas N. Ferreira lucas.n.ferreira@ufv.br Office CCE401B

This site uses Just the Docs, a documentation theme for Jekyll.

UFV

Moodle will be used only for posting grades and managing submissions.

All relevant information can be found on the course webpage:

<u>https://ufv-</u> inf721-2024-2.lucasnferreira.com

Next lecture

L2: Machine Learning

- problems;
- Formalize supervised learning.

Present an introduction to machine learning and it's different types of

