
INF721 - Deep Learning

L12: Normalization

Prof. Lucas N. Ferreira
Universidade Federal de Viçosa

2024/2

1 Introduction

Normalization is a fundamental technique in deep learning that helps accelerate
and stabilize the training of neural networks. In this lecture, we explore three
main types of normalization:

• Input Normalization

• Batch Normalization

• Layer Normalization

2 Input Normalization

When training neural networks, having input features with significantly different
scales can make the optimization process challenging. Consider the following
house price dataset:

Size (m²) Number of Beds. Nearest Subway Station (m) Price (1000’s of USD)
152 4 7200 1550
229 3 3000 2286
84 1 1500 2930
...
95 3 12000 196

Table 1: House Price Prediction Dataset

Note how the ”Nearest Subway Station” feature has a much larger scale
compared to the other features. To understand why these different scales mat-
ter, let’s consider training a linear regression model using stochastic gradient
descent:

1

Impact of Different Scales

Initial conditions:

• Weights: w = [0, 0, 0]

• Learning rate: α = 0.1

• Update rule: w = w − α(ŷ(i) − y(i))x(i)

For the first example:

w = [0, 0, 0] + 155 · [152, 4, 7200]
= [23560, 620, 1116000]

Notice how the weight corresponding to the ”Nearest Subway Station”
feature gets updated by a much larger amount due to its scale!

Having different scales in the input features make the error landscape have
different curvatures along different dimensions, as shown in the figure below for
two parameters w and b:

Figure 1: Error Landscape with Different Feature Scales

This significant difference in feature scales leads to:

• Different magnitudes in gradients

• Slower convergence

• Numerical instability

• Difficulty in selecting an appropriate learning rate

2

2.1 Formulation

Given a dataset X with m examples, input normalization transforms each fea-
ture to have zero mean and unit variance:

x(i)
norm =

x(i) − µ

σ
(1)

where:

µ =
1

m

m∑
i=1

x(i) (mean)

σ2 =
1

m

m∑
i=1

(x(i) − µ)2 (variance)

Let’s walk through the normalization process for our house price dataset:

1. Original data as a matrix X:

X =

 152 229 84 95
4 3 1 3

7200 3000 1500 12000

 (2)

, where rows represent features: size (m²), number of bedrooms, and
subway distance (m).

2. Computing Mean

Mean vector µ for each feature:

µ =
1

4

4∑
i=1

x(i) =
1

4

 152 + 229 + 84 + 95
4 + 3 + 1 + 3

7200 + 3000 + 1500 + 12000

 =

 140
2.75
5925


3. Compute Variance

For each feature, subtract mean and square:

(X− µ) =

 12 89 −56 −45
1.25 0.25 −1.75 0.25
1275 −2925 −4425 6075

 (3)

Square each element:

(X− µ)2 =

 144 7921 3136 2025
1.5625 0.0625 3.0625 0.0625
1625625 8555625 19580625 36905625

 (4)

3

Compute variance σ2 by taking mean of squared differences:

σ2 =
1

4

4∑
i=1

(x(i) − µ)2 =

 3306.5
1.1875

16666875


Take square root to get standard deviation:

σ =

 57.50
1.09

4082.50

 (5)

4. Normalize Input

Apply the normalization formula to each feature:

Xnorm =
X− µ

σ
(6)

For each feature j and example i:

x
(i)
norm,j =

x
(i)
j − µj

σj
(7)

This gives us:

Xnorm =

0.209 1.548 −0.974 −0.783
1.147 0.229 −1.606 0.229
0.312 −0.717 −1.084 1.489

 (8)

When you normalize the input features, you transform the error landscape
into a more isotropic shape, which helps the optimization algorithm converge
faster and more reliably. See figure below for an example with only two param-
eters w and b:

Figure 2: Error Landscape after Input Normalization

4

2.2 Implementation

Here’s a simple implementation in NumPy:

Input Normalization in NumPy

def norma l i z e input (X) :
”””
X: input data o f shape (n f ea tu r e s , n examples)
”””
mean = np .mean(X, ax i s =1, keepdims=True)
std = np . std (X, ax i s =1, keepdims=True)
X norm = (X − mean) / (std + 1e−8)
return X norm , mean , std

Important: The same µ and σ used to normalize the training set must be
used for validation and test sets!

3 Batch Normalization

While input normalization helps with the first layer, the distributions of acti-
vations in deeper layers can still shift during training, a phenomenon known
as internal covariate shift. Batch normalization (BatchNorm) addresses this by
normalizing the activations at each layer. For a minibatch of size m, BatchNorm
normalizes the pre-activations z[l] of layer l:

µB =
1

m

m∑
i=1

z[l](i)

σ2
B =

1

m

m∑
i=1

(z[l](i) − µB)
2

ẑ[l](i) =
z[l](i) − µB√

σ2
B + ϵ

z
[l](i)
BN = γ ⊙ ẑ[l](i) + β

where γ and β are learnable parameters that allow the network to recover
the original representation if needed.

4 Layer Normalization

BatchNorm has limitations when the batch size is small, as the estimates of
mean and variance become noisy. Layer normalization (LayerNorm) addresses

5

this by normalizing across features instead of across the batch. For each example
i, LayerNorm normalizes across all n[l] units in layer l:

µ(i) =
1

n[l]

n[l]∑
j=1

z
[l](i)
j

(σ(i))2 =
1

n[l]

n[l]∑
j=1

(z
[l](i)
j − µ(i))2

ẑ
[l](i)
j =

z
[l](i)
j − µ(i)√
(σ(i))2 + ϵ

z
[l](i)LN

j = γj ẑ
[l](i)
j + βj

5 Examples

Let’s consider a concrete example with real values to understand how batch and
layer normalization work in practice. Given input matrix X and weight matrix
W[1]:

X =

1.0 2.0 −1.0 0.0
0.5 1.0 0.5 −1.0
0.0 0.0 1.0 −0.5

 , W[1] =

 0.1 −0.2 0.1
0.2 0.1 −0.1
−0.1 0.2 0.1

 (9)

With bias vector b[1] = [0, 0, 0]T , the pre-activation matrix Z[1] is:

Z[1] =

 0.2 0.4 −0.1 −0.15
−0.15 −0.3 0.45 −0.2
0.05 0.1 −0.05 0.05

 (10)

5.1 Batch Normalization Computation

For batch normalization, we normalize across examples (columns) for each fea-
ture (row):

Computing mean µB (across columns):

µB =

 0.08
−0.05
0.03

 (11)

Computing variance σ2
B (across columns):

σ2
B =

0.050.08
0.02

 (12)

6

Normalized matrix:

Z
[1]
BN =

 0.50 1.39 −0.83 −1.05
−0.34 −0.85 1.70 −0.51
0.22 1.14 −1.60 0.22

 (13)

5.2 Layer Normalization Computation

For layer normalization, we normalize across features (rows) for each example:
Computing mean µL (across rows):

µL =
[
0.03 0.06 0.10 −0.10

]
(14)

Computing variance σ2
L (across rows):

σ2
L =

[
0.02 0.08 0.06 0.01

]
(15)

Normalized matrix:

Z
[1]
LN =

 1.16 1.16 −0.80 −0.46
−1.27 −1.27 1.40 −0.92
0.11 0.11 −0.60 1.38

 (16)

The figure below illustrates the difference between BatchNorm and Lay-
erNorm. Note how BatchNorm normalizes across examples (columns) while
LayerNorm normalizes across features (rows).

Figure 3: Comparison of BatchNorm and LayerNorm

6 Conclusion

Normalization is a crucial technique in deep learning that helps stabilize and
accelerate training. Here are some key takeaways:

• Input Normalization:

7

1. Normalizes features across the entire dataset.

2. Applied only once before training.

3. Always apply input normalization as a preprocessing step.

• Batch Normalization:

1. Normalizes activations across examples in a minibatch.

2. Use BatchNorm when batch size is sufficiently large (e.g, 32 or more).

3. BatchNorm is more approapriate for computer vision problems (and
hence CNNs) because features depend on the statistical parameters
between different samples.

• Layer Normalization:

1. Normalizes activations across features for each example indepen-
dently.

2. Use LayerNorm when batch size is small.

3. LayerNorm is more appropriate for Natual Lenguage Processing prob-
lems because the different features of a single sample are actually the
variations in words over time, and the feature relationships within
the sample are very close.

Moreover, keep track of normalization statistics (mean, variance) for infer-
ence and be careful with the axis of normalization in your implementation!

8

