
INF721 - Deep Learning

L9: Advanced Optimization Algorithms

Prof. Lucas N. Ferreira
Universidade Federal de Viçosa

2024/2

1 Introduction

As discussed last lecture, training deep learning models is an interative process
that alternates between training and validation to solve underfitting and over-
fitting problems. Amongs these two processes, training is by far the slowest
one. In deep learning, where we want to train networks with many layers in
large datasets, the ability to train models quickly is crucial. In this lecture, we’ll
discuss advanced optimization algorithms that can help accelerate the training
process. These techniques are crucial for improving the efficiency and effective-
ness of deep learning models, especially when dealing with large datasets.

2 Mini-batch Gradient Descent

When dealing with large datasets (e.g., 5 million images), it becomes impractical
to load the entire dataset into memory for training. Thus, we can’t take advange
of vectorizaztion to speed up training. Mini-batch gradient descent solves this
problem by dividing the training set X into smaller subsets called mini-batches
X{t}. The mini-batch gradient descent algorithm works as follows:

Algorithm 1 Mini-batch Gradient Descent

1: n batches← m//s
2: for e = 1 to n epochs do
3: for t = 1 to n batches do
4: ŷ{t} ← forward pass(X{t})
5: l{t} ← 1

s

∑
L(ŷ{t}, y{t})

6: dW {t}, db{t} ← backward pass(X{t}, y{t})
7: W [l] ←W [l] − α · dWt

8: b[l] ← b[l] − α · dbt
9: end for

10: end for

1



Where:

• m is the total number of training examples

• s is the mini-batch size

• α is the learning rate

• X{t} and Y {t} are the input and target output for mini-batch t

The Gradient Descent algorithm has different names depending on the size
of the mini-batch s:

• Batch Gradient Descent: s = m (uses the entire dataset)

– One weight update per epoch for the entire dataset

– Slow but precise updates due to exact gradient computation

• Stochastic Gradient Descent: s = 1 (uses one example)

– m updates per epoch, one for each example

– Very fast but imprecise weight updates due to noisy gradients

– Doesn’t use vectorization, which can be inefficient

• Mini-batch Gradient Descent: 1 < s < m (uses a subset of the
dataset)

– Multiple updates per epoch, one for each mini-batch

– Fast updates with approximate gradients

– Balances speed and precision

2.1 Choosing Batch Size

• For small datasets: Use Batch Gradient Descent

• For large datasets: Use Mini-batch Gradient Descent

• Mini-batch size (hyperparameter):

– Typically a power of two (e.g., 32, 64, 128, 256, 512, 1024)

– Should fit in your CPU/GPU memory

2



2.2 Learning Curves

Learning curves show the evolution of the loss function over time (iterations
or epochs) during training. Here’s an example of learning curves for Batch
Gradient Descent and Mini-batch Gradient Descent:

Iterations

Loss

Batch GD
Mini-batch GD

Learning Curves: Batch GD vs Mini-batch GD

Figure 1: Comparison of learning curves for Batch Gradient Descent (BGD)
and Mini-batch Gradient Descent (MBGD)

• Batch GD computes the exact gradient using the entire dataset in each
iteration, resulting in a steady, monotonic decrease in loss.

• Mini-batch GD computes approximate gradients using small subsets of
the dataset, leading to a noisier, more jagged decrease in loss.

3 Gradient Descent with Momentum

Gradient Descent with Momentum accelerates the optimization process by com-
puting the Exponential Moving Average (see Appendix) of gradients. This helps
to smooth out the updates and speed up convergence.

Algorithm 2 Gradient Descent with Momentum

1: Initialize Vdw, Vdb = 0
2: for each mini-batch do
3: Compute gradients dw, db = backward(X{t})
4: Vdw = β · Vdw + (1− β)dw
5: Vdb = β · Vdb + (1− β)db
6: W [l] = W [l] − αVdw

7: b[l] = b[l] − αVdb

8: end for

Where:

• Vdw, Vdb are the averaged gradients

3



• β is the exponential moving average hyperparameter, also called the mo-
mentum hyperparameter (typically 0.9)

• α is the learning rate

3.1 Advantages of Gradient Descent with Momentum

• Accelerates convergence, especially in scenarios with high curvature or
small but consistent gradients

• Reduces oscillations in the vertical direction while maintaining fast learn-
ing in the horizontal direction

• Helps overcome local minima and saddle points

4 Root Mean Squared Propagation (RMSProp)

RMSProp is another optimization algorithm that adapts the learning rate for
each parameter based on the history of squared gradients.

4.1 Algorithm

Algorithm 3 RMSProp

1: Initialize Sdw, Sdb = 0
2: for each mini-batch do
3: Compute gradients dw, db = backward(X{t})
4: Sdw = β · Sdw + (1− β)dw2

5: Sdb = β · Sdb + (1− β)db2

6: W [l] = W [l] − α dw√
Sdw

7: b[l] = b[l] − α db√
Sdb

8: end for

Where:

• Sdw, Sdb are the exponentially weighted average of squared gradients

• β is the decay rate (typically 0.999)

• α is the learning rate

4.2 Advantages of RMSProp

• Adapts the learning rate for each parameter independently

• Handles different scales of gradients effectively

• Helps to mitigate the vanishing gradient problem

4



5 Adaptive Moment Estimation (Adam)

Adam is an optimization algorithm that combines ideas from both Gradient
Descent with Momentum and RMSProp.

Algorithm 4 Adam Optimization

1: Initialize Vdw, Vdb, Sdw, Sdb = 0
2: for each mini-batch do
3: Compute gradients dw, db = backward(Xt)
4: Vdw = β1 · Vdw + (1− β1)dw
5: Vdb = β1 · Vdb + (1− β1)db
6: Sdw = β2 · Sdw + (1− β2)dw

2

7: Sdb = β2 · Sdb + (1− β2)db
2

8: V corrected
dw = Vdw

1−βt
1

9: V corrected
db = Vdb

1−βt
1

10: Scorrected
dw = Sdw

1−βt
2

11: Scorrected
db = Sdb

1−βt
2

12: W [l] = W [l] − α
V corrected
dw√
Scorrected
dw

13: b[l] = b[l] − α
V corrected
db√
Scorrected
db

14: end for

Where:

• Vdw, Vdb are the momentum terms

• Sdw, Sdb are the RMSProp terms

• β1 is the momentum decay rate (typically 0.9)

• β2 is the RMSProp decay rate (typically 0.999)

• α is the learning rate

• t is the iteration number

5.1 Advantages of Adam

• Combines the benefits of both Momentum and RMSProp

• Adapts the learning rate for each parameter independently

• Includes bias correction for more accurate initial estimates

• Generally performs well across a wide range of problems

5



6 Conclusion

This lecture covered several advanced optimization algorithms used in deep
learning:

• Mini-batch Gradient Descent

• Gradient Descent with Momentum

• Root Mean Squared Propagation (RMSProp)

• Adaptive Moment Estimation (Adam)

These algorithms aim to improve the training process of neural networks by
addressing issues such as slow convergence and noisy gradients. Understanding
these optimization techniques is crucial for effectively training deep learning
models, especially when dealing with large datasets and complex architectures.

In practice, Adam is often the go-to optimization algorithm for many deep
learning practitioners due to its robust performance across various tasks. How-
ever, it’s important to experiment with different optimizers and hyperparame-
ters to find the best configuration for your specific problem.

6



Exercises

1. Which of the following statements about mini-batch gradient descent is
correct?

a) It uses the entire dataset for each update

b) It uses only one example for each update

c) It balances speed and precision by using subsets of the dataset

d) It is always slower than batch gradient descent

2. In the context of optimization algorithms, what does the term ”momen-
tum” refer to?

a) The speed at which the algorithm converges

b) The exponential moving average of gradients

c) The learning rate of the algorithm

d) The size of the mini-batch

3. If β = 0.95 in an exponential moving average, approximately how many
recent samples does the average effectively consider?

a) 10 samples

b) 20 samples

c) 30 samples

d) 40 samples

4. Which optimization algorithm combines ideas from both Gradient Descent
with Momentum and RMSProp?

a) Stochastic Gradient Descent

b) Batch Gradient Descent

c) Adam

d) Mini-batch Gradient Descent

5. In the RMSProp algorithm, what is the purpose of the term Sdw?

a) It stores the exponentially weighted average of gradients

b) It stores the exponentially weighted average of squared gradients

c) It represents the learning rate

d) It represents the mini-batch size

7



A Moving Averages

In statistics and signal processing, a moving average is a calculation used to
analyze data points by creating a series of averages of different subsets of the
full dataset. Moving averages are commonly used to smooth out short-term
fluctuations and highlight longer-term trends or cycles in time series data. In
the context of optimization algorithms, moving averages can help stabilize the
learning process and improve convergence.

A.1 Types of Moving Averages

• Simple Moving Average (SMA): The simple moving average is the
unweighted mean of the previous T data points.

vt =
1

T
·

T∑
t=1

θt

• Weighted Moving Average (WMA): The weighted average has mul-
tiplying factors to give different weights to data at different positions in
the sample window of size T .

vt =
1∑T

t=1 wt

·
T∑

t=1

θt · wt

• Exponential Moving Average (EMA): The exponential moving av-
erage applies exponentially decreasing weights to the data points in the
sample window. The EMA at time t is calculated as follows:

vt = βvt−1 + (1− β)θt

Where:

• vt is the moving average at time t

• θt is the sample value at time t

• β is the decay rate (typically close to 1, e.g., 0.9)

A.2 Properties of Exponential Moving Average

• vt is approximately the average of the last 1
1−β samples

• Higher β values result in slower adaptation to new samples

• Examples:

– β = 0.9 ≈ average of last 10 samples

– β = 0.98 ≈ average of last 50 samples

– β = 0.5 ≈ average of last 2 samples

8



A.3 Bias Correction

When using EMA, initial average values can be poor estimates. This can be
addressed using bias correction:

vt =
βvt−1 + (1− β)θt

1− βt

This adjustment helps to obtain more accurate estimates, especially in the
early stages of averaging.

9


	Introduction
	Mini-batch Gradient Descent
	Choosing Batch Size
	Learning Curves

	Gradient Descent with Momentum
	Advantages of Gradient Descent with Momentum

	Root Mean Squared Propagation (RMSProp)
	Algorithm
	Advantages of RMSProp

	Adaptive Moment Estimation (Adam)
	Advantages of Adam

	Conclusion
	Moving Averages
	Types of Moving Averages
	Properties of Exponential Moving Average
	Bias Correction


