
INF721 - Deep Learning

L8: Regularization

Prof. Lucas N. Ferreira
Universidade Federal de Viçosa

2024/2

1 Introduction

This lecture covers regularization techniques in deep learning, which are essential
methods for reducing overfitting and improving model generalization. We will
discuss several regularization approaches, including L1 and L2 regularization,
dropout, data augmentation, and early stopping.

2 Experimenting with Neural Networks

When working with neural networks, it’s crucial to experiment with different
configurations to find the best-performing model. The key hyperparameters to
consider include:

• Number of hidden layers

• Number of hidden units per layer

• Activation functions

• Learning rate

The goal is to find a configuration that performs well on the validation set.
This process involves dealing with underfitting and overfitting scenarios.

2.1 Underfitting vs. Overfitting

When experimenting with neural networks, you may encounter different scenar-
ios:

Underfit Overfit Good Fit
Training error High Low Low
Validation error High High Low

1

• Underfitting (High Bias): The model performs poorly on both training
and validation sets, indicating that it’s too simple to capture the under-
lying patterns in the data.

• Overfitting (High Variance): The model performs well on the training
set but poorly on the validation set, suggesting that it has memorized the
training data rather than learning generalizable patterns.

• Good Fit: The model performs well on both training and validation sets,
indicating that it has learned the underlying patterns without overfitting.

2.2 Example: Image Classification

Consider an image classification task for cats vs. dogs, with a balanced dataset
and a human baseline accuracy of approximately 100%:

Underfit Overfit Good Fit
Training Accuracy 45% 99% 95%
Validation Accuracy 42% 67% 94%

This example illustrates how different scenarios manifest in terms of training
and validation accuracies.

2.3 Experimental Recipe

A common approach to defining a good neural network for a particular problem
is to follow an experimental recipe that involves iteratively adjusting hyperpa-
rameters based on the model’s performance on that problem:

Algorithm 1 Neural Network Experimentation

1: Start with an initial set of hyperparameters
2: while not done do
3: Train the model on the training set
4: if high bias (underfitting) then
5: Try: bigger network, train longer, different architecture
6: else if high variance (overfitting) then
7: Try: more data, regularization, different architecture
8: else
9: Done

10: end if
11: end while
12: Report test performance

This iterative process helps in systematically improving the model’s perfor-
mance.

2

3 Regularization

Regularization techniques aim to simplify models and reduce overfitting. The
main regularization methods we’ll discuss are:

• L1 regularization

• L2 regularization

• Dropout

• Data augmentation

• Early stopping

4 L1 Regularization

L1 regularization adds the L1 norm of the weight matrices to the loss function,
penalizing neural networks with high weight values:

L(h) = − 1

m

m∑
i=1

L(y(i), ŷ(i)) +
λ

2m

∑
l

∥W [l]∥1

where λ is a hyperparameter controlling the strength of regularization.
For a weight matrix W [l], the L1 norm is defined as:

∥W [l]∥1 =

n[l−1]∑
i=1

n[l]∑
j=1

|wij |

L1 regularization tends to make the weight matrix sparse, pushing many
weights to exactly zero.

5 L2 Regularization

L2 regularization adds the square of the L2 norm of the weight matrices to the
loss function:

L(h) = − 1

m

m∑
i=1

L(y(i), ŷ(i)) +
λ

2m

∑
l

∥W [l]∥22

For a weight matrix W [l], the squared L2 norm is defined as:

∥W [l]∥22 =

n[l−1]∑
i=1

n[l]∑
j=1

|wij |2

L2 regularization decays weights more uniformly over time, rarely setting
them to exactly zero.

3

6 Gradient Descent Update Rules with Regu-
larization

When we modify the loss function with regularization terms, the gradient de-
scent update rule changes accordingly. Let’s examine how the gradients of the
loss function change for both L1 and L2 regularization.

6.1 L1 Regularization

The L1 regularized loss function Lr(h) of a model h with l weight matrices is:

Lr(h) = L(h) +
λ

2m

∑
l

∥W [l]∥1

where L(h) is the original loss function (e.g., BCE or MSE) and ∥W [l]∥1 is
the L1 norm of the weight matrix W [l].

Step 1: Expand the L1 norm

Lr(h) = L(h) +
λ

2m

∑
l

∑
i,j

|w[l]
ij |

Step 2: Take the partial derivative with respect to a single weight w
[k]
ab

∂Lr

∂w
[k]
ab

=
∂L

∂w
[k]
ab

+
λ

2m

∂

∂w
[k]
ab

∑
l

∑
i,j

|w[l]
ij |

Step 3: Simplify the regularization term

∂Lr

∂w
[k]
ab

=
∂L

∂w
[k]
ab

+
λ

2m

∂

∂w
[k]
ab

|w[k]
ab |

Step 4: Apply the derivative of the absolute value function

∂Lr

∂w
[k]
ab

=
∂L

∂w
[k]
ab

+
λ

2m
sign(w

[k]
ab)

where sign(x) is defined as:

sign(x) =

1 if x > 0

0 if x = 0

−1 if x < 0

Step 5: Generalize to the entire weight matrix W [l]

∂Lr

∂W [l]
=

∂L

∂W [l]
+

λ

2m
sign(W [l])

4

6.2 L2 Regularization

The L2 regularized loss function is:

Lr(W) = L(W) +
λ

2m

∑
l

∥W [l]∥22

where ∥W [l]∥22 is the squared L2 norm of the weight matrix W [l].

Step 1: Expand the squared L2 norm

Lr(W) = L(W) +
λ

2m

∑
l

∑
i,j

(w
[l]
ij)

2

Step 2: Take the partial derivative with respect to a single weight w
[k]
ab

∂Lr

∂w
[k]
ab

=
∂L

∂w
[k]
ab

+
λ

2m

∂

∂w
[k]
ab

∑
l

∑
i,j

(w
[l]
ij)

2

Step 3: Simplify the regularization term

∂Lr

∂w
[k]
ab

=
∂L

∂w
[k]
ab

+
λ

2m

∂

∂w
[k]
ab

(w
[k]
ab)

2

Step 4: Apply the power rule of differentiation

∂Lr

∂w
[k]
ab

=
∂L

∂w
[k]
ab

+
λ

2m
· 2w[k]

ab

Step 5: Simplify
∂Lr

∂w
[k]
ab

=
∂L

∂w
[k]
ab

+
λ

m
w

[k]
ab

Step 6: Generalize to the entire weight matrix W [l]

∂Lr

∂W [l]
=

∂L

∂W [l]
+

λ

m
W [l]

6.3 Gradient Descent Update Rules

Based on these derivations, we can now write the gradient descent update rules
for both regularization techniques:

For L1 regularization:

W [l] = W [l] − α

(
∂L

∂W [l]
+

λ

2m
· sign(W [l])

)

5

For L2 regularization:

W [l] = W [l] − α

(
∂L

∂W [l]
+

λ

m
W [l]

)
Which can be rewritten as:

W [l] = (1− αλ

m
)W [l] − α

∂L

∂W [l]

These step-by-step derivations show how the regularization terms affect the gra-
dients and, consequently, the weight updates during training. The key difference
lies in how the regularization term is added to the original loss gradient:

• L1 regularization adds a constant term (λ
2m) multiplied by the sign of

each weight. This pushes weights towards zero, potentially making them
exactly zero, which leads to sparse weight matrices.

• L2 regularization adds a term proportional to the weight matrix itself
(λ
mW [l]). This causes the weights to decay towards zero, but they are less

likely to become exactly zero.

6.4 Implementation Considerations

In practice, when implementing these regularization techniques:

1. For L1 regularization, you need to compute the sign of the weight matrix,
which can be computationally expensive for large networks.

2. For L2 regularization, the weight decay term can be easily incorporated
into the update rule, often leading to more efficient implementations.

3. Some deep learning frameworks provide built-in support for these regular-
ization techniques, allowing you to simply specify the regularization type
and strength (λ) when defining your model or optimizer.

7 Dropout

Dropout is a regularization technique used to reduce overfitting in neural net-
works. It works by randomly ”dropping out” or deactivating a subset of neurons
during each training iteration.

7.1 How Dropout Works

The process of dropout can be described as follows:

1. For each layer, assign a probability (keep probability) of retaining each
node.

6

(1) Before processing (2) First example

(3) Second example (4) Third example

Figure 1: Illustration of dropout dynamics in a neural network across different
training examples. Gray neuraons have been dropped out.

2. During each training iteration:

(a) Randomly select nodes to keep based on the assigned probability.

(b) Remove the selected nodes and their corresponding input and output
connections.

(c) Train the network on this reduced architecture for the current exam-
ple.

3. Repeat this process for each training example, creating a different reduced
network each time.

This technique forces the network to learn more robust features that can
work with many different random subsets of neurons.

7.2 Implementing Dropout

The most common implementation of dropout is called ”inverted dropout.”
Here’s a basic implementation in Python:

def i nve r t ed dropout (a , keep prob) :
d = np . random . rand (∗ a . shape) < keep prob
a ∗= d
a /= keep prob
return a , d

7

In this implementation:

• a is the activation of the current layer

• keep prob is the probability of keeping a neuron active

• d is a mask of 1s and 0s, where 1 indicates a kept neuron

• We multiply a by d to zero out dropped neurons

• We divide by keep prob to scale the activations, ensuring the expected
value remains unchanged

7.3 Dropout at Test Time

During testing or inference, dropout is typically not used. Instead:

1. Use the full network with all neurons.

2. No random dropping of neurons occurs.

3. No need for additional scaling if inverted dropout was used during training.

This approach ensures deterministic output and takes advantage of the full
network’s capacity.

7.4 Why Dropout Works

Dropout is effective for several reasons:

1. It prevents co-adaptation of neurons, where features only work well in the
context of other specific features.

2. It approximates training an ensemble of many sub-networks, as each train-
ing iteration uses a different subset of neurons.

3. It encourages each neuron to learn more robust features that are useful
in many contexts, rather than relying on specific co-occurrences of other
neurons.

7.5 Practical Considerations

When implementing dropout:

• Typically, lower dropout rates (higher keep probabilities) are used for
input layers, and higher dropout rates for hidden layers.

• Dropout is usually not applied to the output layer.

• The keep probability is a hyperparameter that may require tuning for
optimal performance.

8

• Dropout often requires larger networks and more training iterations to
achieve the best results.

Dropout has become a standard technique in many neural network architec-
tures due to its simplicity and effectiveness in reducing overfitting.

8 Data Augmentation

Data augmentation consists of artificially increase the size of your training set
and reduce overfitting in neural networks. It involves creating new training
examples by applying transformations to existing ones. For example, for image
classification tasks, common data augmentation techniques include:

• Flipping: Horizontally flipping images. For example, flipping a cat image
horizontally still results in a valid cat image.

• Random cropping: Taking random crops or zooms of the original image.

• Rotation: Applying small random rotations to the images.

• Color jittering: Slightly altering the color balance or intensity.

It’s important to note that the transformations should preserve the image’s
class. For instance, vertical flips might not be suitable for cat classification, as
upside-down cats are not typically encountered.

8.1 Benefits of Data Augmentation

• Increases the effective size of the training set without the cost of collecting
new data

• Helps the model learn invariance to certain transformations

• Reduces overfitting by exposing the model to more varied examples

8.2 Limitations

While data augmentation is beneficial, it’s not as effective as collecting genuinely
new, independent examples. The augmented data is not truly independent of
the original data.

9 Early Stopping

Early stopping is a regularization technique that involves halting the training
process before the model begins to overfit on the training data.

9

Number of epochs

L
os
s
V
a
lu
e

Validation set error
Training set error

Figure 2: Training and Testing Error Curves. The vertical dashed line indicates
the point where early stopping would be applied.

9.1 How Early Stopping Works

1. During training, monitor both the training error and the validation (dev
set) error.

2. The training error typically decreases monotonically as training progresses.

3. The validation error often decreases initially but starts to increase as the
model begins to overfit.

4. Stop training when the validation error starts to increase or plateau.

5. Use the model parameters from the point where validation error was low-
est.

9.2 Advantages of Early Stopping

• Prevents overfitting by stopping training before the model becomes too
complex

• Allows you to implicitly try different model complexities without explicitly
trying many values of regularization parameters

• Can save computational resources by reducing training time

10

9.3 Disadvantages and Considerations

• Couples the optimization process with the regularization process, which
can make the machine learning pipeline less modular

• May make it harder to separately analyze and improve the optimization
and regularization aspects of your model

• Can be seen as interrupting the optimization process before it fully con-
verges

10 Conclusion

Regularization techniques are crucial for improving the generalization of deep
learning models. By applying these methods, we can reduce overfitting and
create more robust models that perform well on unseen data. The choice of
regularization technique depends on the specific problem, dataset, and model
architecture. Often, a combination of these techniques yields the best results.

In practice, it’s important to experiment with different regularization meth-
ods and hyperparameters to find the optimal configuration for your specific
task. Remember to use the validation set for tuning these hyperparameters and
reserve the test set for final evaluation.

11

Exercises

1. Consider a neural network model with the following performance:

• Training set accuracy: 99.5%

• Test set accuracy: 87%

Which of the following techniques would be most appropriate to improve
the model’s generalization?

(a) Increase the number of neurons in each layer

(b) Add L2 regularization to the loss function

(c) Reduce the learning rate

(d) Remove all activation functions except in the output layer

2. In L2 regularization, what typically happens when you increase the regu-
larization hyperparameter λ (lambda)?

(a) The model’s capacity to fit complex functions increases

(b) The model’s weights tend to become larger in magnitude

(c) Weights are pushed toward becoming smaller (closer to 0)

(d) The model becomes more prone to overfitting

3. Which regularization technique is more likely to produce sparse weight
matrices?

(a) L1 regularization

(b) L2 regularization

(c) Dropout

(d) Data augmentation

4. What typically happens when you increase the keep prob parameter in
dropout?

(a) The regularization effect becomes stronger

(b) The network learns more slowly during training

(c) The regularization effect becomes weaker

(d) The computational cost of training increases significantly

5. Consider a weight matrix W =

[
0.2 −0.1
0.3 0.4

]
. What is its L1 norm?

(Round to 2 decimal places)

(a) 0.50

(b) 0.72

(c) 1.00

(d) 1.28

12

A Vector and Matrix Norms

A.1 Vector Norms

A norm is a function that maps a vector to a non-negative real number, satisfying
certain properties:

For any vectors x, y ∈ X and scalar α ∈ R:

1. ∥x∥ ≥ 0 and ∥x∥ = 0 if and only if x = 0

2. ∥x+ y∥ ≤ ∥x∥+ ∥y∥ (triangle inequality)

3. ∥αx∥ = |α|∥x∥ (scalar multiplication)

A.1.1 Lp Norms

Lp norms are a special type of norm defined as:

∥x∥p =

(
n∑

i=1

|xi|p
) 1

p

Two commonly used norms are:

• L1 Norm: ∥x∥1 =
∑n

i=1 |xi|

• L2 Norm (Euclidean norm): ∥x∥2 =
√∑n

i=1 |xi|2

A.1.2 Example: Vector Norms

Let’s compute the L1 and L2 norms for the weight vector w = [−1, 2]:
L1 norm:

∥w∥1 = | − 1|+ |2| = 1 + 2 = 3

L2 norm:

∥w∥2 =
√

(−1)2 + 22 =
√
1 + 4 =

√
5 ≈ 2.236

A.1.3 Geometric Representation of Vector Norms

The unit circle for L1 and L2 norms in 2D space looks like this:
This geometric representation helps visualize the differences between L1 and

L2 norms.

13

A.2 Matrix Norms

Matrix norms are similar to vector norms but applied to matrices. They treat a
matrix as a vector with mn dimensions, where m and n are the number of rows
and columns, respectively.

Two popular matrix norms are:

• L1 Norm: ∥A∥1 =
∑m

i=1

∑n
j=1 |aij |

• L2 Norm (Frobenius norm): ∥A∥2 =
√∑m

i=1

∑n
j=1 |aij |2

A.2.1 Example: Matrix Norms

Let’s calculate the L1 and L2 norms for the following weight matrix:

W =

[
0.1 −0.05
0.02 0.15

]
L1 norm:

∥W∥1 = |0.1|+ | − 0.05|+ |0.02|+ |0.15| = 0.1 + 0.05 + 0.02 + 0.15 = 0.32

L2 norm:

∥W∥2 =
√
0.12 + (−0.05)2 + 0.022 + 0.152 =

√
0.0354 ≈ 0.188

14

	Introduction
	Experimenting with Neural Networks
	Underfitting vs. Overfitting
	Example: Image Classification
	Experimental Recipe

	Regularization
	L1 Regularization
	L2 Regularization
	Gradient Descent Update Rules with Regularization
	L1 Regularization
	L2 Regularization
	Gradient Descent Update Rules
	Implementation Considerations

	Dropout
	How Dropout Works
	Implementing Dropout
	Dropout at Test Time
	Why Dropout Works
	Practical Considerations

	Data Augmentation
	Benefits of Data Augmentation
	Limitations

	Early Stopping
	How Early Stopping Works
	Advantages of Early Stopping
	Disadvantages and Considerations

	Conclusion
	Vector and Matrix Norms
	Vector Norms
	Lp Norms
	Example: Vector Norms
	Geometric Representation of Vector Norms

	Matrix Norms
	Example: Matrix Norms

