
INF721 - Deep Learning

L6: Backpropagation

Prof. Lucas N. Ferreira
Universidade Federal de Viçosa

2024/2

1 Introduction

This lecture covers the backpropagation algorithm, which is fundamental for
training neural networks efficiently. We’ll explore how backpropagation works,
its relationship to computational graphs, and see examples of applying it to
logistic regression and multilayer perceptrons.

2 Review of Previous Lecture

Before diving into backpropagation, let’s briefly review key concepts from the
previous lecture:

• Non-linearly separable problems: We discussed how multilayer percep-
trons can solve problems that linear models cannot.

• Multilayer Perceptron (MLP): We introduced the architecture of MLPs,
which consist of multiple layers of neurons.

• Forward pass: We learned how to compute the output of an MLP given
an input.

• Hypothesis space: We explored how MLPs can represent composite func-
tions, expanding their representational power.

• Categorical Cross-Entropy Loss: We introduced this loss function for mul-
ticlass classification problems.

3 Gradient Descent for Neural Networks

Gradient descent is the core optimization algorithm used to train neural net-
works. The general process remains the same as for simpler models, but com-
puting the gradients becomes more complex. Here’s a high-level overview of
gradient descent for a 2-layer neural network:

1

def opt imize (x , y , l r , n i t e r) :
I n i t i a l i z e we i gh t s randomly c l o s e to 0
W 1, b 1 , W 2, b 2 = in i t we i gh t s r and ()

for t in range (n i t e r) :
Forward pass : Pred i c t l a b e l s
y hat = forward (W 1, b 1 , W 2, b 2)

Compute g rad i en t s
dw 1 , db 1 , dw 2 , db 2 = backward ()

Update we i gh t s
W 1 = W 1 − l r ∗ dw 1
b 1 = b 1 − l r ∗ db 1
W 2 = W 2 − l r ∗ dw 2
b 2 = b 2 − l r ∗ db 2

return W 1, b 1 , W 2, b 2

The key challenge lies in computing the gradients efficiently, which is where
backpropagation comes in.

4 The Need for Backpropagation

For simple models like linear or logistic regression, we can compute gradients
by hand:

• Linear Regression: ∂L
∂w = (ŷ − y)x, ∂L

∂b = (ŷ − y)

• Logistic Regression: ∂L
∂w = (ŷ − y)x, ∂L

∂b = (ŷ − y)

However, as neural networks grow in size and complexity, manual computa-
tion of gradients becomes:

1. Error-prone: It’s easy to make mistakes in long derivations.

2. Inflexible: Changing the model or loss function requires recomputing all
gradients.

3. Time-consuming: Deriving gradients for large networks is tedious and
impractical.

Backpropagation solves these issues by providing an efficient, automated way
to compute gradients for any neural network architecture.

2

5 Computational Graphs

Before diving into backpropagation, we need to understand computational graphs.
A computational graph is a directed graph that represents mathematical oper-
ations:

• Nodes represent functions of their inputs

• Edges represent function arguments

5.1 Example 1: Simple Function

Consider the function f(x, y, z) = (x+ y)z. We can represent this as a compu-
tational graph:

x

y

+

z

∗ f
q

5.2 Example 2: Logistic Regression

We can also represent more complex functions, like logistic regression, as a
computational graph:

w

x

∗

b

+ σ h
z

Here, h(w, x, b) = σ(wx+ b), where σ is the sigmoid function.
Computational graphs provide a structured way to represent and compute

complex functions, which is crucial for implementing backpropagation efficiently.

6 Backpropagation Algorithm

Backpropagation is an algorithm that uses computational graphs and the chain
rule of calculus to compute gradients of a function efficiently. It consists of two
main steps:

1. Forward Pass: Compute the outputs of the function, storing partial results
in each node.

2. Backward Pass: Compute the derivative of the output with respect to
each input, using the chain rule and the stored partial results.

3

6.1 Chain Rule Reminder

The chain rule states that for composite functions:

d

dx
f(g(x)) =

df

dg
· dg
dx

This is crucial for backpropagation, as neural networks are essentially large
composite functions.

6.2 Example: Backpropagation on a Simple Function

Let’s apply backpropagation to compute gradients for f(x, y, z) = (x + y)z,
considering x = −2, y = 5, z = −4:

1. Forward Pass:

x = −2

y = 5

z = −4

q = x+ y = (−2) + 5 = 3

f = qz = 3 · (−4) = −12

2. Backward Pass:

∂f

∂f
= 1 (base case)

∂f

∂z
=

∂f

∂z
· ∂f
∂f

= q · 1 = 3

∂f

∂q
=

∂f

∂q
· ∂f
∂f

= z · 1 = −4

∂f

∂y
=

∂q

∂y
· ∂f
∂q

= 1 · (−4) = −4

∂f

∂x
=

∂q

∂x
· ∂f
∂q

= 1 · (−4) = −4

This example demonstrates how backpropagation efficiently computes gra-
dients by reusing partial results and applying the chain rule. Notice how the
gradients form a chain of multiplications to compute the derivatives of the func-
tion f with respect to its inputs x, y, z:

∂f

∂x
=

∂q

∂x
· ∂f
∂q

· ∂f
∂f

∂f

∂y
=

∂q

∂y
· ∂f
∂q

· ∂f
∂f

∂f

∂z
=

∂f

∂z
· ∂f
∂f

4

7 Backpropagation for Logistic Regression

Now let’s apply backpropagation to a more practical example: logistic regres-
sion. We’ll compute gradients of the binary cross-entropy loss with respect to
the model parameters.

Model:

ŷ = h(x) =
1

1 + e−(wx+b)

Loss:
L(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ)

Given input (x, y) = (50, 1) and initial parameters w = 0, b = 0:

1. Forward Pass:

z = wx+ b = 0 · 50 + 0 = 0

ŷ = σ(z) =
1

1 + e−0
= 0.5

L ≈ 0.69

2. Backward Pass:

∂L

∂L
= 1

∂L

∂ŷ
=

∂L

∂ŷ
· ∂L
∂L

=

(
−y

ŷ
+

1− y

1− ŷ

)
· 1 = − 1

0.5
+

0

0.5
= −2

∂L

∂z
=

∂ŷ

∂z
· ∂L
∂ŷ

= [ŷ(1− ŷ)] · (−2) = [0.5(1− 0.5)] · (−2) = −0.5

∂L

∂w
=

∂z

∂w
· ∂L
∂z

= x · (−0.5) = 50 · (−0.5) = −25

This example shows how backpropagation computes gradients for logistic
regression, which we can then use in gradient descent to update the parameters
w and b.

8 Backpropagation for Multilayer Perceptron

Finally, let’s extend backpropagation to a 2-layer multilayer perceptron (MLP).
This example will demonstrate how backpropagation scales to deeper networks.
Let’s consider a simple example with the following parameters:

• Model:

z[1] = W [1]x+ b[1]

a[1] = relu(z[1])

z[2] = W [2]a[1] + b[2]

ŷ = σ(z[2])

5

• Loss:
L(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ)

• Input: x =

[
1
2

]
and true label: y = 1

• Weights and biases:

W [1] =

[
0.1 0.2
0.3 0.4

]
, b[1] =

[
0.1
0.2

]
W [2] =

[
0.5 0.6

]
, b[2] = 0.3

We’ll compute gradients with respect toW [1], b[1],W [2], and b[2]. The process
is similar to logistic regression but involves more steps due to the additional
layer.

8.1 Forward Pass

1. Compute z[1]:

z[1] = W [1]x+ b[1]

=

[
0.1 0.2
0.3 0.4

] [
1
2

]
+

[
0.1
0.2

]
=

[
0.1(1) + 0.2(2)
0.3(1) + 0.4(2)

]
+

[
0.1
0.2

]
=

[
0.5
1.1

]
+

[
0.1
0.2

]
=

[
0.6
1.3

]
2. Compute a[1] using ReLU activation:

a[1] = g(z[1]) = max(0, z[1]) =

[
max(0, 0.6)
max(0, 1.3)

]
=

[
0.6
1.3

]
3. Compute z[2]:

z[2] = W [2]a[1] + b[2]

=
[
0.5 0.6

] [0.6
1.3

]
+ 0.3 = (0.5 · 0.6 + 0.6 · 1.3) + 0.3

= (0.3 + 0.78) + 0.3 = 1.38

4. Compute ŷ using sigmoid activation:

ŷ = σ(z[2]) =
1

1 + e−z[2]
=

1

1 + e−1.38
≈ 0.7986

5. Compute the loss:

L(ŷ, y) = −y log ŷ − (1− y) log(1− ŷ)

= −(1) log(0.7986)− (1− 1) log(1− 0.7986)

= − log(0.7986)

≈ 0.2247

6

8.2 Backward Pass

∂L

∂L
= 1

∂L

∂ŷ
=

∂L

∂ŷ
· ∂L
∂L

= −y

ŷ
+

1− y

1− ŷ
· 1 = −1.2521

∂L

∂z[2]
=

∂ŷ

∂z[2]
· ∂L
∂ŷ

= ŷ(1− ŷ) · −1.2521 = −0.2016

∂L

∂W [2]
=

∂z[2]

∂W [2]
· ∂L

∂z[2]
= (a[1])T · −0.2016 =

[
−0.1210 −0.2621

]
∂L

∂b[2]
=

∂z[2]

∂b[2]
· ∂L

∂z[2]
= 1 · −0.2016 = −0.2016

∂L

∂a[1]
=

∂z[2]

∂a[1]
· ∂L

∂z[2]
= (W [2])T · −0.2016 =

[
0.5
0.6

]
· −0.2016 =

[
−0.1008
−0.1210

]
∂L

∂z[1]
=

∂a[1]

∂z[1]
· ∂L

∂a[1]
=

[
1
1

]
⊙
[
−0.1008
−0.1210

]
=

[
−0.1008
−0.1210

]
∂L

∂W [1]
=

∂z[1]

∂W [1]
· ∂L

∂z[1]
= xT · ∂L

∂z[1]
=

[
1 2

]
·
[
−0.1008
−0.1210

]
=

[
−0.1008 −0.2016
−0.1210 −0.2420

]
∂L

∂b[1]
=

∂z[1]

∂b[1]
· ∂L

∂z[1]
= 1 · ∂L

∂z[1]
=

[
−0.1008
−0.1210

]
Note: ⊙ denotes element-wise multiplication. The derivative of ReLU is 1

for positive inputs and 0 for negative inputs. Since both elements of z[1] are
positive, the derivative is 1 for both.

This example demonstrates how backpropagation computes gradients through
multiple layers of a neural network. The process involves repeatedly applying
the chain rule to propagate gradients backwards from the output layer to the
input layer. This allows us to update all parameters of the network based on
their contribution to the final loss.

8.3 Update Weights

The computed gradients can now be used to update the network parameters
using the gradient descent update rule Wnew = Wold − α · ∂L

∂W , where α is the
learning rate. Here are the updated weights and biases based on the computed
gradients and a learning rate of 0.1:

7

W [1]
new = W

[1]
old − α · ∂L

∂W [1]

=

[
0.1 0.2
0.3 0.4

]
− 0.1 ·

[
−0.1008 −0.2016
−0.1210 −0.2420

]
=

[
0.1 0.2
0.3 0.4

]
+

[
0.01008 0.02016
0.01210 0.02420

]
=

[
0.11008 0.22016
0.31210 0.42420

]

b[1]new = b
[1]
old − α · ∂L

∂b[1]

=

[
0.1
0.2

]
− 0.1 ·

[
−0.1008
−0.1210

]
=

[
0.1
0.2

]
+

[
0.01008
0.01210

]
=

[
0.11008
0.21210

]

W [2]
new = W

[2]
old − α · ∂L

∂W [2]

=
[
0.5 0.6

]
− 0.1 ·

[
−0.1210 −0.2621

]
=

[
0.5 0.6

]
+
[
0.01210 0.02621

]
=

[
0.51210 0.62621

]
b[2]new = b

[2]
old − α · ∂L

∂b[2]

= 0.3− 0.1 · (−0.2016)

= 0.3 + 0.02016

= 0.32016

9 Conclusion

Backpropagation is a powerful algorithm that enables efficient training of neural
networks. By leveraging computational graphs and the chain rule, it provides a
systematic way to compute gradients for any network architecture. This allows
us to apply gradient descent to optimize complex models with millions of param-
eters. In the next lecture, we’ll explore techniques for evaluating deep learning
models, including metrics like accuracy, learning curves, cross-validation, and
confusion matrices.

8

Exercises

1. What is the main advantage of using backpropagation in neural networks?

(a) It reduces the number of parameters in the network

(b) It allows for efficient computation of gradients in complex networks

(c) It eliminates the need for activation functions

(d) It guarantees that the network will find the global minimum of the
loss function

2. Consider the function f(x, y, z) = x2y + yz. If x = 2, y = 3, and z = 4,
what is ∂f

∂y ?

(a) 12

(b) 10

(c) 8

(d) 6

3. In a logistic regression model with input x = 50, true label y = 1, and
initial parameters w = 0, b = 0, what is the gradient ∂L

∂w after one forward
and backward pass? (Round to the nearest integer)

(a) -25

(b) 25

(c) -50

(d) 50

4. For a 2-layer MLP with ReLU activation in the hidden layer and sigmoid
activation in the output layer, which of the following is NOT a step in the
backward pass?

(a) Computing ∂L
∂ŷ

(b) Computing ∂L
∂z[2]

(c) Computing ∂L
∂W [1]

(d) Computing ∂L
∂x

5. Given a 2-layer MLP with weights W [1] =

[
0.2 0.3
0.4 0.5

]
, b[1] =

[
0.2
0.3

]
, W [2] =[

0.6 0.7
]
, b[2] = 0.4, input x =

[
2
1

]
, ReLU in the hidden layer and

sigmoid in the output layer. What is the updated value of b[2] after one
step of gradient descent with learning rate α = 0.1? Assume true label
y = 1. (Round to 3 decimal places).

(a) 0.4113

9

(b) 0.4078

(c) 0.3921

(d) 0.3879

10

	Introduction
	Review of Previous Lecture
	Gradient Descent for Neural Networks
	The Need for Backpropagation
	Computational Graphs
	Example 1: Simple Function
	Example 2: Logistic Regression

	Backpropagation Algorithm
	Chain Rule Reminder
	Example: Backpropagation on a Simple Function

	Backpropagation for Logistic Regression
	Backpropagation for Multilayer Perceptron
	Forward Pass
	Backward Pass
	Update Weights

	Conclusion

