
INF721 - Deep Learning

L4: Logistic Regression

Prof. Lucas N. Ferreira
Universidade Federal de Viçosa

2024/2

1 Introduction

This lecture covers logistic regression, an important algorithm in machine learn-
ing and a foundational concept for understanding neural networks. We’ll start
by revisiting linear regression with multiple features, then discuss vectorization
techniques for efficient implementation, and finally dive into logistic regression.

2 Linear Regression with Multiple Features

2.1 Recap of Univariate Linear Regression

In the previous lecture, we discussed univariate linear regression, which models
the relationship between a single input feature x and an output y:

h(x) = wx+ b (1)

Where w is the weight and b is the bias term.

2.2 Multiple Linear Regression

We can extend this model to handle multiple input features. Given a dataset
D with d input features:

x1 (Size in m2) x2 N. of beds x3 Age in years y (Price in 1000’s USD)
152 4 24 1550
229 3 35 2286
84 1 10 293
95 3 14 196
...

...
...

...

The multiple linear regression model is:

1

hw,b(x) = w1x1 + w2x2 + . . .+ wdxd + b (2)

We can write this more compactly using vector notation:

hw,b(x) = w · x+ b (3)

Where:

• w = [w1, w2, . . . , wd] is the weight vector

• x = [x1, x2, . . . , xd] is the input vector

• b is the scalar bias term

The dot product w · x is defined as:

w · x = w1x1 + w2x2 + . . .+ wdxd (4)

2.3 Loss Function and Gradients

The loss function for multiple linear regression remains the Mean Squared Error
(MSE):

L(hw,b) =
1

2m

m∑
i=1

(hw,b(x
(i))− y(i))2 (5)

The gradients with respect to each weight wj and the bias b are:

∂L

∂wj
=

1

m

m∑
i=1

(hw,b(x
(i))− y(i))x

(i)
j (6)

∂L

∂b
=

1

m

m∑
i=1

(hw,b(x
(i))− y(i)) (7)

3 Vectorization

Vectorization is a programming technique that optimizes code to perform op-
erations on entire vectors or matrices at once, rather than using explicit loops.
This approach is crucial in machine learning for several reasons:

• Significantly faster execution (takes advantage of SIMD instructions)

• More concise and readable code

• Better utilization of modern CPU/GPU architectures

• Improved scalability for large datasets

2

3.1 Vectorizing Multiple Linear Regression

Let’s compare a non-vectorized implementation with a vectorized one:

Without vectorization:

Input features as a list

x = [152, 4, 24]

Weights as a list

w = [0.1, 4.0, -2.0]

Bias term as a float

b = 4

def model(x, w, b):

y_hat = 0

for i in range(len(x)):

y_hat += w[i] * x[i]

return y_hat + b

With vectorization (using NumPy):

import numpy as np

Input features as a vector

x = np.array([152, 4, 24])

Weights as a vector

w = np.array([0.1, 4.0, -2.0])

Bias term as a float

b = 4

def model(x, w, b):

return np.dot(w, x) + b

The vectorized version is not only more concise but also much faster, espe-
cially for large datasets.

3.2 Why Vectorization Speeds Up ML Code

Vectorization takes advantage of Single Instruction, Multiple Data (SIMD) op-
erations in modern CPUs and GPUs. Instead of performing operations sequen-
tially in a loop, vectorized operations can be executed in parallel.

For example, in the dot product calculation:

• Non-vectorized: Requires d cycles (where d is the number of features)

• Vectorized: Can be computed in a single cycle (or a few cycles, depending
on the hardware)

This parallelism leads to significant speedups, especially for large datasets
and complex models.

3

4 Logistic Regression

4.1 Problem: Binary Classification

Let’s consider a binary classification problem: predicting whether a tumor is
malignant based on its size. Our dataset D might look like this:

x (size cm) y (malignant)
9.63 1
4.32 0
5.42 0
9.52 1
...

...

Where y = 1 indicates a malignant tumor, and y = 0 indicates a benign
tumor.

4.2 Why Not Use Linear Regression?

One might be tempted to use linear regression for this problem, but there are
several issues:

1. Unbounded output: Linear regression produces outputs in R, not [0, 1].

2. Interpretation: The output of linear regression doesn’t have a clear
probabilistic interpretation.

3. Sensitivity to outliers: Extreme values can significantly skew the deci-
sion boundary.

We could try to address the first issue by defining a prediction threshold:

ŷ =

{
0, if h(x) < 0.5

1, if h(x) ≥ 0.5
(8)

However, this doesn’t solve the other problems, and the model remains sen-
sitive to outliers.

4.3 Logistic Regression Model

Logistic regression addresses these issues by using a logistic function (also called
sigmoid function) to map the linear combination of inputs to a value between 0
and 1:

hw,b(x) = σ(w · x+ b) (9)

Where σ is the sigmoid function:

4

σ(z) =
1

1 + e−z
(10)

The sigmoid function has several important properties:

• It’s bounded between 0 and 1: 0 < σ(z) < 1

• It’s S-shaped, with a steeper slope near z = 0

• σ(0) = 0.5

4.4 Hypothesis Space

The hypothesis space for logistic regression consists of all functions of the form:

hw,b(x) =
1

1 + e−(w·x+b)
(11)

Different values of w and b produce different shapes of the sigmoid curve:

• Changing w affects the steepness of the curve

• Changing b shifts the curve left or right

4.5 Probabilistic Interpretation

One of the key advantages of logistic regression is its probabilistic interpretation.
The output hw,b(x) can be interpreted as the probability that the label y is 1,
given the input x:

hw,b(x) = P (y = 1|x) (12)

For example:

• If h(3) = 0.12, it means there’s a 12

• If h(7) = 0.94, it means there’s a 94

The probability of the tumor being benign (y = 0) is simply the complement:

P (y = 0|x) = 1− P (y = 1|x) = 1− hw,b(x) (13)

4.6 Decision Boundary

To make predictions, we typically use a threshold of 0.5:

ŷ =

{
0, if hw,b(x) < 0.5

1, if hw,b(x) ≥ 0.5
(14)

5

The decision boundary is the set of points where hw,b(x) = 0.5. For a two-
dimensional input space, this forms a line (or hyperplane in higher dimensions)
that separates the two classes. For example, if we have a trained model:

hw,b(x) = σ(x1 + x2 − 3) (15)

The decision boundary would be the line x1 + x2 = 3.

4.7 Loss Function: Binary Cross-Entropy

To train a logistic regression model, we need a suitable loss function. While
we could use Mean Squared Error (MSE), it’s not the best choice for logistic
regression because it results in a non-convex optimization problem. Instead, we
use the Binary Cross-Entropy (BCE) loss function:

L(h) = − 1

m

m∑
i=1

[
y(i) log(h(x(i))) + (1− y(i)) log(1− h(x(i)))

]
(16)

This loss function is derived from the principle of maximum likelihood esti-
mation. Here’s an intuitive explanation:

1. For a single example (x(i), y(i)), we want to maximize:

• P (y(i) = 1|x(i)) = h(x(i)) if y(i) = 1

• P (y(i) = 0|x(i)) = 1− h(x(i)) if y(i) = 0

2. We can combine these into a single expression:

P (y(i)|x(i)) = h(x(i))y
(i)

· (1− h(x(i)))1−y(i)

(17)

3. For the entire dataset, we want to maximize the product of these proba-
bilities:

L(h) =

m∏
i=1

h(x(i))y
(i)

· (1− h(x(i)))1−y(i)

(18)

4. Taking the logarithm (to convert product to sum) and negating (to convert
maximization to minimization) gives us the BCE loss function.

The BCE loss has several desirable properties:

• It’s convex, making optimization easier

• It heavily penalizes confident and wrong predictions

• It has a probabilistic interpretation

6

5 Gradient Derivation for Logistic Regression

To optimize the parameters of our logistic regression model using gradient de-
scent, we need to compute the gradients of the loss function with respect to the
weights and bias. Surprisingly, these gradients have the same form as in linear
regression:

5.1 Model and Loss Function

The logistic regression model is defined as:

h(x) = σ(wx+ b) =
1

1 + e−(wx+b)
(19)

The binary cross-entropy loss function is:

L = −[y log(h(x)) + (1− y) log(1− h(x))] (20)

5.2 Derivative with respect to w

We start by applying the chain rule:

∂L

∂w
= −

[
y

∂

∂w
log(h(x)) + (1− y)

∂

∂w
log(1− h(x))

]
(21)

= −
[
y

1

h(x)

∂h(x)

∂w
+ (1− y)

1

1− h(x)

∂(1− h(x))

∂w

]
(22)

= −
[
y

1

h(x)

∂h(x)

∂w
− (1− y)

1

1− h(x)

∂h(x)

∂w

]
(23)

Now, we calculate ∂h(x)
∂w :

∂h(x)

∂w
=

∂

∂w

1

1 + e−(wx+b)
(24)

=
e−(wx+b)

(1 + e−(wx+b))2
· x (25)

= h(x)(1− h(x))x (26)

Substituting back:

∂L

∂w
= −

[
y

1

h(x)
h(x)(1− h(x))x− (1− y)

1

1− h(x)
h(x)(1− h(x))x

]
(27)

= −[y(1− h(x))x− (1− y)h(x)x] (28)

= −[(y − yh(x))x− (h(x)− yh(x))x] (29)

= −[y − h(x)]x (30)

= [h(x)− y]x (31)

7

5.3 Derivative with respect to b

The derivation for b is similar, but ∂(wx+b)
∂b = 1 instead of x:

∂L

∂b
= [h(x)− y] (32)

To summarize, the gradient for logistic regression is:

∂L

∂w
= [h(x)− y]x (33)

∂L

∂b
= [h(x)− y] (34)

5.4 Implementing Logistic Regression

Here’s a basic implementation of logistic regression using gradient descent:

def optimize(X, y, lr, n_iter):

m, n = X.shape

w = np.zeros(n)

b = 0

for _ in range(n_iter):

Forward pass

z = np.dot(X, w) + b

y_hat = sigmoid(z)

Compute gradients

dw = (1/m) * np.dot(X.T, (y_hat - y))

db = (1/m) * np.sum(y_hat - y)

Update parameters

w -= lr * dw

b -= lr * db

return w, b

This implementation uses vectorization for efficiency. The ‘optimize‘ func-
tion performs gradient descent to find the optimal weights and bias, while the
‘predict‘ function uses these parameters to make predictions on new data.

6 Conclusion

Logistic regression is a fundamental algorithm in machine learning, particu-
larly for binary classification problems. It addresses the limitations of linear
regression for classification tasks by using the sigmoid function to map inputs
to probabilities. The key points to remember are:

8

• Logistic regression outputs probabilities between 0 and 1

• It uses the sigmoid function to squash the linear combination of inputs

• The decision boundary is linear, making it a linear classifier

• Binary Cross-Entropy is used as the loss function

• Despite its name, logistic regression is used for classification, not regression

Understanding logistic regression is crucial as it forms the basis for more
complex models, including neural networks. In fact, each neuron in a neural
network typically performs a logistic regression operation.

In the next lecture, we’ll explore Multilayer Perceptrons (MLPs), which
extend the ideas of logistic regression to create more powerful, non-linear clas-
sifiers.

9

Exercises

1. What is the main advantage of using logistic regression over linear regres-
sion for binary classification problems?

(a) Logistic regression is faster to compute

(b) Logistic regression outputs probabilities between 0 and 1

(c) Logistic regression can handle multi-class problems directly

(d) Logistic regression always has a lower error rate

2. What is the primary reason for using Binary Cross-Entropy as the loss
function for logistic regression instead of Mean Squared Error?

(a) Binary Cross-Entropy is easier to compute

(b) Binary Cross-Entropy results in a convex optimization problem

(c) Binary Cross-Entropy always produces lower error rates

(d) Binary Cross-Entropy can handle multi-class problems directly

3. Given a trained logistic regression model hw,b(x) = σ(2x1 − x2 +1), what
is the equation of the decision boundary?

(a) 2x1 − x2 = 0

(b) 2x1 − x2 = −1

(c) x1 − 2x2 = 1

(d) x1 − x2 = 1

4. Given a logistic regression model hw,b(x) = σ(w ·x+ b) where w = [2,−1],
b = −1, and σ(z) = 1

1+e−z , calculate the output probabilities for the

following input points: x(1) = [1, 2], x(2) = [0, 1], x(3) = [2, 0]. Which of
the following is correct?

(a) h(x(1)) ≈ 0.26, h(x(2)) ≈ 0.11, h(x(3)) ≈ 0.95

(b) h(x(1)) ≈ 0.73, h(x(2)) ≈ 0.26, h(x(3)) ≈ 0.88

(c) h(x(1)) ≈ 0.26, h(x(2)) ≈ 0.73, h(x(3)) ≈ 0.88

(d) h(x(1)) ≈ 0.73, h(x(2)) ≈ 0.95, h(x(3)) ≈ 0.12

5. Using the model from question 2 and the following dataset: x(1) = [1, 2], y(1) =
1; x(2) = [0, 1], y(2) = 0; x(3) = [2, 0], y(3) = 1, perform one step of gradient
descent to update w and b. Use a learning rate α = 0.1 and the Binary
Cross-Entropy loss function. Which of the following correctly represents
the updated w and b?

(a) w = [0.95,−1.03], b = −0.97

(b) w = [1.99,−1.03], b = −1.05

(c) w = [2.02,−0.95], b = −0.97

(d) w = [2.02,−1.05], b = −1.05

10

	Introduction
	Linear Regression with Multiple Features
	Recap of Univariate Linear Regression
	Multiple Linear Regression
	Loss Function and Gradients

	Vectorization
	Vectorizing Multiple Linear Regression
	Why Vectorization Speeds Up ML Code

	Logistic Regression
	Problem: Binary Classification
	Why Not Use Linear Regression?
	Logistic Regression Model
	Hypothesis Space
	Probabilistic Interpretation
	Decision Boundary
	Loss Function: Binary Cross-Entropy

	Gradient Derivation for Logistic Regression
	Model and Loss Function
	Derivative with respect to w
	Derivative with respect to b
	Implementing Logistic Regression

	Conclusion

