
INF721 - Deep Learning

L3: Linear Regression

Prof. Lucas N. Ferreira
Universidade Federal de Viçosa

2024/2

1 Introduction

Linear regression is a fundamental algorithm in machine learning and serves
as a building block for neural networks. It is one of the simplest paramet-
ric algorithms and provides an excellent introduction to the concepts we’ll use
throughout this deep learning course.

1.1 Context in Deep Learning

While linear regression might seem basic compared to complex neural networks,
understanding it is crucial because:

1. It introduces key concepts like hypothesis spaces, loss functions, and op-
timization.

2. The techniques used in linear regression, particularly gradient descent, are
foundational for training neural networks.

3. A single neuron in a neural network can be viewed as performing linear
regression.

2 Supervised Learning Review

Before diving into linear regression, let’s briefly review supervised learning:

• Supervised learning involves learning from labeled data.

• The goal is to find a function that maps inputs to outputs based on ex-
ample input-output pairs.

• We focus on two main types of supervised learning problems:

– Regression: Predicting continuous values

1

– Classification: Predicting discrete categories

• Linear regression is a regression algorithm, as the name suggests.

3 Linear Regression Problem Formulation

Let’s consider a specific problem to illustrate linear regression: predicting house
prices based on their size.

3.1 Dataset Description

We have a dataset of house sizes and their corresponding prices:

• Input feature x: House size in square meters

• Output label y: House price in thousands of dollars

• The dataset contains 30 examples

Figure 1: House size vs. price dataset

3.2 Goal of Linear Regression

The objective of linear regression is to find a linear function that best fits (see
Figure 1) the given dataset D = {(x(1), y(1)), (x(2), y(2))..., (x(m), y(m))} and can
predict the price of houses not in the dataset. This linear function will be used
to estimate house prices based on their sizes.

2

4 Hypothesis Space

In linear regression, our hypothesis space H is defined as the set of linear func-
tions:

h(x) = wx+ b

Where:

• w is the weight (or slope)

• b is the bias (or y-intercept)

• x is the input feature (house size in our example)

4.1 Visualizing Linear Functions

To better understand the hypothesis space, let’s look at some examples of linear
functions:

• h(x) = 0x+ 1.5: A horizontal line parallel to the x-axis at y = 1.5

• h(x) = 0.5x+ 0: A line passing through the origin with a slope of 0.5

• h(x) = 0.5x+ 1: A line with a y-intercept of 1 and a slope of 0.5

Figure 2: Examples of linear functions

3

5 Loss Function

To measure how well our linear function fits the data, we need a loss function.
For linear regression, we use the Mean Squared Error (MSE) loss:

L(w, b) =
1

2m

m∑
i=1

(h(x(i))− y(i))2

Where:

• m is the number of examples in the dataset

• h(x(i)) is the predicted value for the i-th example

• y(i) is the true value for the i-th example

The factor of 1
2 is added for mathematical convenience when computing

derivatives.

5.1 Intuition Behind MSE

The MSE loss function:

• Measures the average squared difference between predictions and true val-
ues

• Penalizes larger errors more heavily due to the squaring

• Always produces a non-negative value

• Reaches its minimum (zero) when predictions perfectly match true values

MSE is particularly well-suited because it is continuously differentiable and a
convex function for linear regression. This means it has a single global minimum,
which makes optimization easier and more reliable. The convexity ensures that
gradient descent will converge to the global optimum regardless of the starting
point.

6 Optimization: Gradient Descent

Now that we have defined our hypothesis space and loss function, we need a
way to find the optimal values for w and b that minimize the loss. This is
where gradient descent comes in. Gradient descent is a first-order iterative
optimization algorithm for finding a local minimum of a differentiable function.
It’s one of the most important algorithms in deep learning, used for training
neural networks.

4

6.1 Gradient Descent Algorithm

The basic idea of gradient descent is:

1. Start with initial values for the parameters (w and b)

2. Compute the gradient of the loss function with respect to each parameter

3. Update the parameters in the opposite direction of the gradient

4. Repeat steps 2-3 until convergence

Mathematically, for each iteration t:

wt+1 = wt − α
∂L

∂w

bt+1 = bt − α
∂L

∂b

Where α is the learning rate, a hyperparameter that controls the step size
of each iteration.

6.2 Visualizing Gradient Descent

To better understand how gradient descent works, let’s visualize it on a contour
plot of the loss function:

In this visualization:

• The x and y axes represent the parameters w and b

• The contour lines represent the loss function values

• The red crosses represent the loss values L(w, b) at different parameter
values w, b

• The blue arrows show the direction of steepest descent. We can see the
optimization path converging towards the minimum.

6.3 Impact of Learning Rate

The learning rate α is a crucial hyperparameter in gradient descent that sig-
nificantly affects the optimization process. It determines the step size at each
iteration while moving toward a minimum of the loss function. Choosing the
appropriate learning rate is essential for efficient and effective optimization.

• Large learning rate

Pros: Faster initial convergence

Cons: May overshoot the minimum, causing divergence or oscillation

5

Figure 3: Gradient descent optimization

• Small learning rate

Pros: More precise convergence, less likely to overshoot

Cons: Slower convergence, may get stuck in local minima

• Optimal learning rate

Balances speed and precision. Allows for efficient convergence to the global
minimum

7 Gradient Descent for Linear Regression

Now that we’ve introduced the gradient descent algorithms, let’s apply it to our
linear regression problem. To do that, we need derive the partial derivatives of
the Mean Squared Error (MSE) loss function with respect to w and b. In this
section we will do that step-by-step. If you need a calculus review, please refer
to the appendix. First, recall our MSE loss function:

L(w, b) =
1

2m

m∑
i=1

(wx(i) + b− y(i))2]

6

7.1 Partial Derivative with respect to w

∂L

∂w
=

∂

∂w

[
1

2m

m∑
i=1

(wx(i) + b− y(i))2

]

=
1

2m

m∑
i=1

∂

∂w

[
(wx(i) + b− y(i))2

]
(Linearity rule)

=
1

2m

m∑
i=1

2(wx(i) + b− y(i))
∂

∂w
(wx(i) + b− y(i)) (Chain rule)

=
1

2m

m∑
i=1

2(wx(i) + b− y(i))x(i) (Cancel out 2)

=
1

m

m∑
i=1

(wx(i) + b− y(i))xi =
1

m

m∑
i=1

(h(xi)− y(i))xi

7.2 Partial Derivative with respect to b

∂L

∂b
=

∂

∂b

[
1

2m

m∑
i=1

(wx(i) + b− y(i))2

]

=
1

2m

m∑
i=1

∂

∂b

[
(wx(i) + b− y(i))2

]
(Linearity rule)

=
1

2m

m∑
i=1

2(wx(i) + b− y(i))
∂

∂b
(wxi + b− y(i)) (Chain rule)

=
1

2m

m∑
i=1

2(wx(i) + b− y(i)) · 1 (Cancel out 2)

=
1

m

m∑
i=1

(wx(i) + b− y(i)) =
1

m

m∑
i=1

(h(x(i))− y(i))

To summarize, we have derived the partial derivatives ∂L
∂w , ∂L

∂b , which are the

components of the gradient vector ∇L = (∂L∂w , ∂L
∂b), that we use in the gradient

descent algorithm to update our parameters w and b.

7.3 Gradient Descent Algorithm for Linear Regression

Here’s the complete gradient descent algorithm for linear regression:

7

def opt imize (x , y , num i te ra t i ons =1000 , l e a r n i n g r a t e =0.01) :
m = len (y)

w, b = 0 , 0
for in range (num i te ra t i ons) :

Compute p r e d i c t i o n s
y pred = w ∗ x + b

Compute g rad i en t s
dw = (1/m) ∗ np .sum((y pred − y) ∗ x)
db = (1/m) ∗ np .sum(y pred − y)

Update parameters
w = w − l e a r n i n g r a t e ∗ dw
b = b − l e a r n i n g r a t e ∗ db

return w, b

8 Conclusion

In this lecture, we’ve covered the fundamentals of linear regression:

• Problem formulation and its relevance to deep learning

• Hypothesis space of linear functions

• Mean Squared Error loss function

• Gradient descent optimization

• Implementation in Python

Understanding these concepts is crucial as we move forward in the course.
Linear regression serves as a stepping stone to more complex models, including
neural networks. The optimization techniques we’ve learned, particularly gra-
dient descent, will be applied repeatedly as we delve deeper into deep learning
algorithms.

In the next lecture, we’ll explore logistic regression, which extends these ideas
to classification problems and introduces the concept of non-linear activation
functions.

8

Exercises

1. In the context of linear regression, what does the hypothesis space H =
{h(x) = wx+ b | w, b ∈ R} represent?

(a) The set of all possible input values

(b) The set of all possible output values

(c) The set of all possible linear functions

(d) The set of all possible loss functions

2. What is the correct formula for updating the weight w in the gradient
descent algorithm for linear regression?

(a) wt+1 = wt − α ∂L
∂w

(b) wt+1 = wt + α ∂L
∂w

(c) wt+1 = wt − α∂L
∂b

(d) wt+1 = wt + α∂L
∂b

3. Which of the following is the correct partial derivative of the MSE loss
function with respect to w in linear regression?

(a) ∂L
∂w = 1

m

∑m
i=1(h(x

(i))− y(i))

(b) ∂L
∂w = 1

m

∑m
i=1(h(x

(i))− y(i))x(i)

(c) ∂L
∂w = 1

2m

∑m
i=1(h(x

(i))− y(i))2

(d) ∂L
∂w = 1

m

∑m
i=1 x

(i)

4. Given a linear regression model h(x) = 2x + 1 and a dataset with three
points: (1, 4), (2, 5), and (3, 8), calculate the predictions and the Mean
Squared Error (MSE). Which of the following is correct?

(a) Predictions: 3, 5, 7; MSE = 2

(b) Predictions: 4, 7, 10; MSE = 1

(c) Predictions: 3, 5, 7; MSE = 2/3

(d) Predictions: 2, 3, 4; MSE = 10

5. Using the model and data from Question 4, perform one step of gradient
descent to update w and b. Use a learning rate α = 0.1. Which of the
following correctly represents the updated w and b? Round your answer
to one decimal place.

(a) w = 2.1, b = 1.1

(b) w = 1.9, b = 0.9

(c) w = 2.2, b = 0.9

(d) w = 1.8, b = 1.1

9

A Appendix: Calculus Review

To understand how we compute the gradients for gradient descent, we need to
review some key concepts from calculus.

A.1 Derivatives

The derivative of a function f(x) at a point x = a is defined as:

f ′(a) = lim
h→0

f(a+ h)− f(a)

h

Intuitively, the derivative represents the slope of the tangent line to the
function f at that point a.

A.2 Partial Derivatives

For functions of multiple variables, we use partial derivatives. The partial
derivative of f(x, y) with respect to x is:

∂f

∂x
= lim

h→0

f(x+ h, y)− f(x, y)

h

A.3 Gradient Vector

The gradient of a multivariate function f(x1, x2, ..., xd) is a vector of its partial
derivatives:

∇f =

(
∂f

∂x1
,
∂f

∂x2
, ...,

∂f

∂xd

)
The gradient vector points in the direction of steepest ascent of the function

f .

A.4 Derivative Rules

Some key derivative rules include:

• Derivative of a constant: d
dxc = 0

• Power rule: d
dxx

n = nxn−1

• Derivative of a sum: d
dx (f(x) + g(x)) = f ′(x) + g′(x)

• Derivative of a product: d
dx (f(x)g(x)) = f ′(x)g(x) + f(x)g′(x)

• Derivative of a quotient: d
dx

(
f(x)
g(x)

)
= f ′(x)g(x)−f(x)g′(x)

(g(x))2

• Derivative of an exponential: d
dxe

ax = aeax

10

• Derivative of a logarithm: d
dx loga(x) =

1
x ln(a)

• Linearity rule: d
dx (af(x) + bg(x)) = a d

dxf(x) + b d
dxg(x)

• Chain rule: dy
dx = dy

du · du
dx

This rule is fundamental in backpropagation for neural networks.

11

	Introduction
	Context in Deep Learning

	Supervised Learning Review
	Linear Regression Problem Formulation
	Dataset Description
	Goal of Linear Regression

	Hypothesis Space
	Visualizing Linear Functions

	Loss Function
	Intuition Behind MSE

	Optimization: Gradient Descent
	Gradient Descent Algorithm
	Visualizing Gradient Descent
	Impact of Learning Rate

	Gradient Descent for Linear Regression
	Partial Derivative with respect to w
	Partial Derivative with respect to b
	Gradient Descent Algorithm for Linear Regression

	Conclusion
	Appendix: Calculus Review
	Derivatives
	Partial Derivatives
	Gradient Vector
	Derivative Rules

